Astaxanthin is a bioactive natural pigment with antioxidant properties. It has extensive applications within the industrial sector as well as in human and animal health. Mucor circinelloides is a zygomycete fungus that accumulates β-carotene as the main carotenoid compound. M. circinelloides is a well-known model organism among Mucorales for studying carotenogenesis in fungi, which makes it a promising candidate for the biotechnological production of carotenoids. In this study, β-carotene hydroxylase (crtR-B) and ketolase (bkt) genes (codon-optimized) were coexpressed from Haematococcus pluvialis in M. circinelloides using two potent promoters gpd1 and zrt1 respectively to generate an astaxanthin-producing biofactory. Following 72 h of cultivation, the recombinant M. circinelloides Mc-57 obtained in this study produced 135 ± 8 µg/g of astaxanthin. This is the highest reported amount in M. circinelloides to date. The mRNA levels of crtR-B and bkt in Mc-57 were assayed using RT-qPCR. These levels showed a 5.7-fold increase at 72 h and a 5.5-fold increase at 24 h, respectively, compared to the control strain. This demonstrated the successful overexpression of both genes, which correlated with the production of astaxanthin in the Mc-57. Moreover, the addition of glutamate (2 g/L) and mevalonate (15 mM) resulted in an increase in astaxanthin production in the recombinant strain. The results showed that the combined addition of these metabolic precursors resulted in 281 ± 20 µg/g of astaxanthin, which is 2.08-fold higher than the control medium (135 ± 8 µg/g). The addition of metabolic precursors also positively impacted the biomass growth of Mc-57, reaching 11.2 ± 0.57 g/L compared to 9.1 ± 0.23 g/L (control medium). The study successfully addressed the challenge of balancing the accumulation of astaxanthin with biomass growth, which has been regarded as common bottleneck in the metabolic engineering of microbial cells. The development of a recombinant fungal strain of M. circinelloides not only increased astaxanthin content. Additionally, it provided a foundation for further improvement of the biotechnological production of astaxanthin in M. circinelloides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-024-04181-x | DOI Listing |
World J Microbiol Biotechnol
January 2025
Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.
Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
Antioxidants, both glutathione (GSH) and astaxanthin (AX), possess beneficial applications in animal growth and antioxidant properties. In this study, three experimental diets with isoproteic and isolipidic were formulated, the control diet (CON), the control diet added with 0.03% Carophyll Pink (contains 10% AX), the control diet added with 0.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China. Electronic address:
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT.
View Article and Find Full Text PDFFood Chem
December 2024
Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
The quality and safety of meat products are critical concerns in the food industry, and consumer demand for clean-label products is increasing. To meet these needs, this study aimed to develop a nitrite-free meat spread using an astaxanthin (0.04 wt%) and carvacrol (15 wt%) co-encapsulated emulsion (AE) and chitosan.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China.
Astaxanthin is a kind of carotenoid with a strong antioxidant ability, which has shown broad applications in the areas of healthcare, medicine, cosmetics, food additives, and aquaculture. With the increasing demand for natural products, the microbial production of astaxanthin has become a new hot spot. In this study, the astaxanthin synthesis pathway was first metabolically constructed in ()().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!