Microfluidic devices have been the subject of considerable attention in recent years. The development of novel microfluidic devices, their evaluation, and their validation requires simulations. While common methods based on Computational Fluid Dynamics (CFD) can be time-consuming, 1D simulation provides an appealing alternative that leads to efficient results with reasonable quality. Current 1D simulation tools cover specific microfluidic applications; however, these tools are still rare and not widely adopted. There is a need for a more versatile and adaptable tool that covers novel applications, like mixing and the addition of membranes, and allows easy extension, resulting in one comprehensive 1D simulation tool for microfluidic devices. In this work, we present an open-source, modular, and extendable 1D simulation approach for microfluidic devices, which is available as an open-source software package at https://github.com/cda-tum/mmft-modular-1D-simulator. To this end, we propose an implementation that consists of a base module (providing the core functionality) that can be extended with dedicated application-specific modules (providing dedicated support for common microfluidic applications such as mixing, droplets, membranes, etc.). Case studies show that this indeed allows to efficiently simulate a broad spectrum of microfluidic applications in a quality that matches previous results or even fabricated devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530630PMC
http://dx.doi.org/10.1038/s41598-024-77741-8DOI Listing

Publication Analysis

Top Keywords

microfluidic devices
20
microfluidic applications
12
modular extendable
8
microfluidic
8
applications mixing
8
devices
6
extendable 1d-simulation
4
1d-simulation microfluidic
4
devices microfluidic
4
devices subject
4

Similar Publications

Paper-Based Sensors: Fantasy or Reality?

Nanomaterials (Basel)

January 2025

Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.

This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors.

View Article and Find Full Text PDF

A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

Biosensors (Basel)

January 2025

CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.

View Article and Find Full Text PDF

In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and () in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and .

View Article and Find Full Text PDF

The Pre-Polarization and Concentration of Cells near Micro-Electrodes Using AC Electric Fields Enhances the Electrical Cell Lysis in a Sessile Drop.

Biosensors (Basel)

January 2025

Biomedical Engineering Program, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA.

Cell lysis is the starting step of many biomedical assays. Electric field-based cell lysis is widely used in many applications, including point-of-care (POC) applications, because it provides an easy one-step solution. Many electric field-based lysis methods utilize micro-electrodes to apply short electric pulses across cells.

View Article and Find Full Text PDF

Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use.

Biosensors (Basel)

January 2025

Department of Biomedical Laboratory Science, Daegu Health College, Chang-ui Building, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea.

Point-of-care (POC) use is one of the essential goals of biosensing platforms. Because the increasing demand for testing cannot be met by a centralized laboratory-based strategy, rapid and frequent testing at the right time and place will be key to increasing health and safety. To date, however, there are still difficulties in developing a simple and affordable, as well as sensitive and effective, platform that enables POC use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!