This study develops a prognostic model to predict metastasis and prognosis in colorectal cancer liver metastases by identifying distinct macrophage subsets. Using scRNA-seq data from primary colorectal cancer and liver metastases, we dissected the cellular landscape to find unique macrophage subpopulations, particularly EEF1G + macrophages, which were prevalent in liver metastases. The study leveraged data from GSE231559, TCGA, and GEO databases to construct an 8-gene risk model named EMGS, based on the EEF1G + macrophage gene signature. Patients were divided into high-risk and low-risk groups using the median EMGS score, with the high-risk group showing significantly worse survival. This group also demonstrated upregulated pathways associated with tumor progression, such as epithelial-mesenchymal transition and angiogenesis, and downregulated metabolic pathways. Moreover, the high-risk group presented an immunosuppressive microenvironment, with a higher TIDE score indicating lower effectiveness of immunotherapy. The study identifies potential drugs targeting the high-risk group, suggesting therapeutic avenues to improve survival. Conclusively, the EMGS score identifies colorectal cancer patients at high risk of liver metastases, highlighting the role of specific macrophage subsets in tumor progression and providing a basis for personalized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530676 | PMC |
http://dx.doi.org/10.1038/s41598-024-77248-2 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
Sci Rep
January 2025
Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8 T cells, and immune checkpoints.
View Article and Find Full Text PDFClin Exp Med
January 2025
Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.
Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.
Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.
Surg Endosc
January 2025
Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Background And Aims: Self-expandable metal stents (SEMS) are effective in alleviating malignant colorectal obstruction. However, bowel perforation following SEMS placement remains a significant concern, as it can adversely affect oncological outcomes. This study aimed to evaluate the recurrence and overall survival rates associated with SEMS-related bowel perforations.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
College of Pharmacy, The Islamic University, Najaf, Iraq.
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!