Optimizing resource utilization for large scale problems through architecture aware scheduling.

Sci Rep

Computer systems Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

Published: November 2024

Rapid development realms of parallel architectures and its heterogeneity have inspired researchers to invent new scheduling strategies to efficiently distribute workloads among these architectures in a way that may lead to better performance. This paper presents a comprehensive study on optimizing resource utilization for large-scale problems by employing architecture-aware scheduling techniques. We conducted a series of experiments to measure the execution times of various architectures with different problem sizes. These experiments have been conducted multiple times to minimize measurement variance. The findings from these experiments are utilized to develop a scheduling strategy that enables faster completion of larger data-parallel problems while maximizing resource utilization. The proposed approach makes performance enhancement with 16.7% for large data size. It has a significant impact on enhancing computational efficiency and reducing costs in high-performance computing environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530424PMC
http://dx.doi.org/10.1038/s41598-024-75711-8DOI Listing

Publication Analysis

Top Keywords

resource utilization
12
optimizing resource
8
utilization large
4
large scale
4
scale problems
4
problems architecture
4
architecture aware
4
scheduling
4
aware scheduling
4
scheduling rapid
4

Similar Publications

The First International Symposium of the World Wild Rice Wiring: Conservation and Utilization of Global Wild Rice Germplasm Resources through International Cooperation.

Mol Plant

January 2025

National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China; State Key Laboratory of Crop Gene Resources and Breeding/ Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Yazhouwan National Laboratory, Sanya 572000, China. Electronic address:

As drastic climatic changes significantly impact global agriculture, the importance of conserving and utilizing wild germplasm has gained prominance. In this context, the conservation and sustainable utilization of wild rice germplasm resources have become a high priority. Although efforts to conserve and sustainably utilize wild rice germplasm are underway globally, they are fragmented and require international cooperation to advance climate-resilient rice breeding and ensure future food securiety.

View Article and Find Full Text PDF

Purpose: Workers' compensation claims can negatively affect the wellbeing of injured workers. For some, these negative effects continue beyond finalisation of the workers' compensation claim. It is unclear what factors influence wellbeing following finalisation of a workers' compensation claim.

View Article and Find Full Text PDF

Karst small towns globally face challenges due to limited disaster-resilient resources, making it difficult to handle increasingly severe disaster environments. Improving the efficiency of disaster-resilient resource utilization and maintaining a tight balance state of disaster-resilient resources (TBS) are crucial for enhancing disaster adaptability and resilience. This study used urban and disaster data from a representative karst region in China (2017-2021) to conduct a quantitative analysis of TBS in karst small towns, exploring the mechanisms and interactions within this state and identifying obstacle factors.

View Article and Find Full Text PDF

Advancements in microalgal biomass conversion for rubber composite applications.

Sci Rep

January 2025

Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.

Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.

View Article and Find Full Text PDF

Metabolomics combined with physiology and transcriptomics reveal the regulation of key nitrogen metabolic pathways in alfalfa by foliar spraying with nano-selenium.

J Nanobiotechnology

January 2025

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.

Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!