Osteomyelitis is a refractory disease of orthopedics, part of which is caused by medical implants. The main difficulties in treatment are the barrier effect after the formation of bacterial biofilm, and the difficulty in achieving sustained antibiotic intervention. In view of this situation, we studied a hydrogel coating that can release CaCl and vancomycin in pH-responsive manner. We used nano-TiO to modify Chitosan/ Gelatin/Aldehyde Hyaluronic Acid (CS/Gel/AHA) hydrogel, and combined with the dip-coating technique, prepared a coating with good mechanical strength. The hydrogel-loaded zeolitic imidazolate framework (ZIF) decomposes under acidic conditions, and the released Ca act on the bacterial Bap protein to inhibit the formation of biofilm, and the released vancomycin kills free bacteria. The antibacterial coating achieved good bactericidal effect in both in vitro experiments and rat subcutaneous implant model. These results not only provide a new way to enhance the strength of hydrogels to prepare coatings, but also utilize a new approach to responsively inhibit the formation of biofilms, showing the promising application prospects of the coating in antibacterial treatment of medical implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122723DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
hydrogel coating
8
formation bacterial
8
bacterial biofilm
8
medical implants
8
inhibit formation
8
coating
5
chitosan/gelatin/aldehyde hyaluronic
4
acid hydrogel
4
coating releasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!