Cellulose nanocrystals (CNCs) and cellulose microfibrils (CMFs) are promising materials with the potential to significantly enhance the mechanical properties of electrospun nanofibers. However, the crucial aspect of optimizing their integration into these nanofibers remains a challenge. In this work, we present a method to prepare and electrospin a cellulosic solution, aiming to overcome the existing challenges and realize the optimized incorporation of CNCs into nanofibers. The solution parameters of electrospinning were explored using a combined experimental and simulation (molecular dynamics) approach. Experimental results emphasize the impact of polymer solution concentration on fiber morphology, reinforcing the need for further optimization. Simulations highlight the intricate factors, including the molecular weight of cellulose acetate (CA) polymer chains, electrostatic fields, and humidity, that impact the alignment of CNCs and CMFs. Furthermore, efforts were made to study CNCs/CMFs alignment rate and quality optimization. It is predicted that pure CNCs benefit more from electrostatic alignment, while lower molecular weight CA enables better CNC/CMF alignment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122698 | DOI Listing |
Heliyon
December 2024
Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States.
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:
In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Sri Krishnadevaraya University, Ananthapur 515003, India. Electronic address:
Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!