Locust bean gum-based silver nanocomposite hydrogel as a drug delivery system and an antibacterial agent.

Int J Biol Macromol

Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (DK), Karnataka, India. Electronic address:

Published: December 2024

Effective drug release is of utmost importance in the medical field for treating various diseases, particularly cancer. Nanocomposite hydrogels remain the best materials for enhancing the bioavailability and therapeutic levels of drugs as they enable sustained, targeted, or controlled drug release. In this work, a nanocomposite hydrogel containing locust bean gum (LBG), poly(4-acryloylmorpholine) (PAcM), and silver nanoparticles (SN) has been made using an eco-friendly microwave (MW)-assisted method and characterized by various advanced techniques. The material is evaluated for its potential as a polymer matrix towards delivering 5-fluorouracil (5-FU), an anticancer drug in the gastrointestinal tract, and inhibiting bacterial growth. The pH-dependency of the nanocomposite material towards swelling and drug release and its antibacterial characteristics have been compared with the neat gel in order to understand the role of SN in enhancing the performance of the materials. The results indicated both polymer materials exhibit a pH-dependent release of 5-FU with a higher release at pH 1.2, simulated gastric fluid, than at pH 7.4, simulated intestinal fluid. About 72 % of the loaded drug was released from the nanocomposite, as compared to 44 % from the neat gel at pH 1.2 during the observation period of 3 h. The drug release process could be best explained by the first-order kinetic model and Fickian diffusion transport mechanism. The nanocomposite exhibited remarkable antibacterial activity against Staphylococcus aureus and Escherichia coli. The biocompatibility of the drug-loaded nanocomposite was demonstrated by a cytotoxicity study, which showed higher than 80 % viability of healthy IEC-6 cells. The results indicate the suitability of the developed nanocomposite material as a polymer matrix for sustained release of 5-FU for cancer therapy and also as an antibacterial agent to fight against bacterial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137097DOI Listing

Publication Analysis

Top Keywords

drug release
16
locust bean
8
nanocomposite
8
nanocomposite hydrogel
8
antibacterial agent
8
polymer matrix
8
nanocomposite material
8
neat gel
8
release 5-fu
8
drug
7

Similar Publications

Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Drug delivery systems loaded with plant-derived natural products for dental caries prevention and treatment.

J Mater Chem B

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.

View Article and Find Full Text PDF

Zebrafish as a Visible Neuroinflammation Model for Evaluating the Anti-Inflammation Effect of Curcumin-Loaded Ferritin Nanoparticles.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.

It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for imaging of the whole body, allowing the progression of the disease to be visualized.

View Article and Find Full Text PDF

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!