Degenerative diseases and injuries of central nervous system (CNS) often cause nerve cell apoptosis and neural dysfunction. Protection of surviving cells or inducing the differentiation of stem cells into functional cells is considered to be an important way of neurorepair. In addition, transdifferentiation technology emerged recently is expected to provide new solutions for nerve regeneration. Cell surface receptors are transmembrane proteins embedded in cytoplasmic membrane, and play crucial roles in maintaining communication between extracellular signals and intracellular signaling processes. The extracellular microenvironment changed dramatically upon neural lesion, exploring the biological function of signals mediated by cell surface receptors will help to develop molecular strategies for nerve regeneration. An increasing number of studies have reported that cell surface receptor-mediated signaling affects the survival, differentiation, and functioning of neural cells, and even regulate their trans-lineage reprogramming. Here, we provide a review on the roles of cell surface receptors in CNS regeneration, thus providing new cues for better treatment of neurodegenerative diseases or nerve injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.10.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!