Per- and polyfluoroalkyl substances (PFAS) have become a major concern in water quality management because of their persistence in the environment and associated health risks. In Maryland, the diverse water resources and densely populated areas, faces unique challenges culminating from PFAS contamination. This research paper presents a comprehensive overview of PFAS contamination trends in Maryland's drinking water systems across four distinct phases, spanning from 2019 to 2022, it highlights the trends of PFAS contamination, environmental and public health risks, and strategies for effective management. Utilizing data from extensive monitoring efforts conducted in the state, the study reveals a persistent and evolving environmental health challenge characterized by the dominance of different PFAS compounds, particularly PFOS and PFOA, found at concerning concentrations. Mean concentrations of total PFOA/PFOS across the sampling periods were at 18.78 ng/L, 7.28 ng/L, 14.60 ng/L, 12.46 ng/L, significantly surpassing the EPA's 2024 maximum contaminant levels of 4 ng/L for PFOA and PFOS. Despite fluctuations observed across sampling phases, PFAS levels consistently surpass EPA health advisory levels, indicating widespread contamination. Potential sources, such as industrial sites and wastewater treatment plants, underscore the need for robust regulatory enforcement and innovative remediation strategies to safeguard public health. The findings emphasize the necessity for continuous monitoring and multi-faceted mitigation approaches to address PFAS contamination effectively, ensuring the safety of Maryland's water resources and the health of its residents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177152 | DOI Listing |
Sci Total Environ
January 2025
LAR5 Laboratory, Department of Engineering, University of Perugia, Perugia, Italy. Electronic address:
Background: PFAS contamination is a global issue, affecting various food sources, especially animal-based products like eggs and dairy.
Objective: Collect scientific evidence of the presence of PFAS in diverse food and edible resources along with the related risks to human health, pursuing the following objectives: determination of the level of terrestrial food chain contamination; determination of the related human health risk.
Data Source: Scopus, PubMed, and Web of Science databases.
Environ Sci Technol
January 2025
Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada.
Trifluoroacetic acid (TFA) is a ubiquitous environmental contaminant; however, its sources are poorly constrained. One understudied source is from the photochemical reactions of aromatic compounds containing -CF moieties (aryl-CF) including many pharmaceuticals and agrochemicals. Here, we studied the aqueous photochemistry of 4-(trifluoromethyl)phenol (4-TFMP), a known transformation product of the pharmaceutical fluoxetine.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked with various cancers. Assessment of PFAS in drinking water and cancers can help inform biomonitoring and prevention efforts.
Objective: To screen for incident cancer (2016-2021) and assess associations with PFAS contamination in drinking water in the US.
Semin Reprod Med
January 2025
Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan.
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
Background: Perfluorinated alkyl substances (PFAS) are suggested to impair immune function in children. Previous studies investigating associations between prenatal PFAS exposure and common infections were performed in background-exposed populations whilst studies from high-exposed populations are lacking.
Objectives: To investigate the association between prenatal PFAS exposure from contaminated drinking water and common infections in children aged 6 months to 7 years in Ronneby, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!