Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of the present study was to compare the dissolution profiles of high-dose salt-form drugs in bicarbonate buffer (BCB) and phosphate buffer (PPB) focusing on the pH changes in the bulk phase. The pH titration curves of BCB and PPB (pH 6.5, buffer capacity (β) = 4.4 mmol/L/pH unit) were first theoretically calculated and experimentally validated. For dissolution tests, six drug salts with an acid counterion, one drug salt with a weak base counterion, and one free acid drug were employed (125-800 mg clinical dose). The dose/fluid volume ratio (Dose/FV) was aligned with the clinical condition. In the pH titration study, the pH value decreased below pH 6.0 by adding HCl > 2.8 mmol/L (BCB) or > 1.6 mmol/L (PPB) and increased above pH 7.0 by adding NaOH > 2.0 mmol/L (BCB) or > 2.4 mmol/L (PPB). In the dissolution test, even though the initial pH and β values were the same, the pH value at 4 h was lower in PPB than in BCB in all cases. For the drug salts with an acid counterion, the area under the dissolution curve was 1.2 to 2.6-fold lower in BCB than in PPB. A marked precipitation process was observed in BCB, but less pronounced or absent in PPB. The results of this study suggest the use of BCB and a clinically equivalent Dose/FV may be valuable in predicting the oral absorption of high-dose drug salts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2024.10.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!