Loss of proteostasis is well documented during physiological aging and depends on the progressive decline in the activity of two major degradative mechanisms: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway. This decline in proteostasis is exacerbated in age-associated neurodegenerative diseases, such as Parkinson's Disease (PD). In PD, patients develop an accumulation of aggregated proteins and dysfunctional mitochondria, which leads to ROS production, neuroinflammation and neurodegeneration. We recently reported that inhibition of the deubiquitinating enzyme USP14, which is known to enhance both the UPS and autophagy, increases lifespan and rescues the pathological phenotype of two Drosophila models of PD. Studies on the effects of USP14 inhibition in mammalian neurons have not yet been conducted. To close this gap, we exploited iNeurons differentiated from human embryonic stem cells (hESCs), and investigated the effect of inhibiting USP14 in these cultured neurons. Quantitative global proteomics analysis performed following genetic ablation or pharmacological inhibition of USP14 demonstrated that USP14 loss of function specifically promotes mitochondrial autophagy in iNeurons. Biochemical and imaging data also showed that USP14 inhibition enhances mitophagy. The mitophagic effect of USP14 inhibition proved to be PINK1/Parkin- independent, instead relying on expression of the mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5. Notably, USP14 inhibition normalized the mitochondrial defects of Parkin KO human neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2024.107484DOI Listing

Publication Analysis

Top Keywords

usp14 inhibition
20
usp14
9
inhibition enhances
8
inhibition
6
enhances parkin-independent
4
parkin-independent mitophagy
4
mitophagy ineurons
4
ineurons loss
4
loss proteostasis
4
proteostasis well
4

Similar Publications

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

USP14 inhibition by degrasyn induces YAP1 degradation and suppresses the progression of radioresistant esophageal cancer.

Neoplasia

December 2024

Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China. Electronic address:

Background: Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA.

Methods: To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Shen-Qi-Di-Huang decoction (SQDHD) is a renowned decoction in traditional Chinese medicine, dating back to the Qing Dynasty. SQDHD has been widely applied in treating renal diseases, including Membranous nephropathy (MN), with its proven positive clinical outcomes. Nevertheless, the precise mechanism by which SQDHD exerts its therapeutic effects on MN remains uncertain.

View Article and Find Full Text PDF

Deubiquitinase inhibitor bAP-15 suppresses renal epithelial to mesenchymal transition via inhibition of p300 stability.

Biochem Biophys Res Commun

December 2024

Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea. Electronic address:

Renal fibrosis is an irreversible disease that is common in patients with chronic kidney disease. Elevated levels of the histone acetyltransferase p300 have been reported in various fibrotic diseases, including renal fibrosis, suggesting that p300 may be a promising therapeutic target. To investigate the specific deubiquitinase (DUB) involved in the regulation of p300 protein stability in renal epithelial cells, we tested 13 DUB inhibitors using a kidney tubular epithelial cell line.

View Article and Find Full Text PDF

This study aims to explore the mechanism underlying the role of ubiquitin-specific protease 14 (USP14) in regulating P53 expression and influencing the development of hepatitis B. The animal and cell models of hepatitis B were constructed. The mRNA and protein expression of USP14, mouse double minute 2 (MDM2), and P53 were detected by western blot and qPCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!