Reconstruction of intra- and extra-neurite conductivity tensors via conductivity at Larmor frequency and DWI data patterns.

Neuroimage

Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea. Electronic address:

Published: November 2024

The developed magnetic resonance electrical properties tomography (MREPT) techniques visualize the internal conductivity distribution at Larmor frequency by measuring the B1 transceive phase data. In biological tissues, electrical conductivity is influenced by ion concentrations and mobility. To visualize the anisotropic conductivity tensor of biological tissues, we use the Einstein-Smoluchowski equation, which links the diffusion coefficient to particle mobility. By assuming a correlation between ion mobility and water diffusivity, we aim to decompose the internal isotropic conductivity at Larmor frequency into anisotropic conductivity tensors within the intra- and extra-neurite compartments. The multi-compartment spherical mean technique (MC-SMT), utilizing both high and low b-value diffusion-weighted imaging (DWI) data, characterizes the diffusion of water molecules within and across the intra- and extra-neurite compartments by analyzing the microstructural intricacies and the foundational architectural arrangement of the brain's tissues. By analyzing the relationships between the measured DWI data, the microscopic diffusion signal, and the fiber orientation distribution function, we predict the DWI data for the intra- and extra-neurite compartments using spherical harmonic decomposition. Using the predicted DWI data for the intra- and extra-neurite compartments, we develop a conductivity tensor imaging method that operates specifically within the separated compartments. Human brain experiments, involving four healthy volunteers and a brain tumor patient, were performed to assess and confirm the reliability of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120900DOI Listing

Publication Analysis

Top Keywords

intra- extra-neurite
20
dwi data
20
extra-neurite compartments
16
larmor frequency
12
conductivity
8
conductivity tensors
8
conductivity larmor
8
biological tissues
8
anisotropic conductivity
8
conductivity tensor
8

Similar Publications

The developed magnetic resonance electrical properties tomography (MREPT) techniques visualize the internal conductivity distribution at Larmor frequency by measuring the B1 transceive phase data. In biological tissues, electrical conductivity is influenced by ion concentrations and mobility. To visualize the anisotropic conductivity tensor of biological tissues, we use the Einstein-Smoluchowski equation, which links the diffusion coefficient to particle mobility.

View Article and Find Full Text PDF

The glymphatic system is centred around brain cerebrospinal fluid flow and is enhanced during sleep, and the synaptic homeostasis hypothesis proposes that sleep acts on brain microstructure by selective synaptic downscaling. While so far primarily studied in animals, we here examine in humans if brain diffusivity and microstructure is related to time of day, sleep quality and cognitive performance. We use diffusion weighted images from 916 young healthy individuals, aged between 22 and 37 years, collected as part of the Human Connectome Project to assess diffusion tensor image analysis along the perivascular space index, white matter fractional anisotropy, intra-neurite volume fraction and extra-neurite mean diffusivity.

View Article and Find Full Text PDF

Introduction: Despite evidence suggesting deleterious effects of cannabis and nicotine tobacco product (NTP) use on white matter integrity, there have been limited studies examining white matter integrity among users of both cannabis and nicotine. Further, updated white matter methodology provides opportunities to investigate use patterns on neurite orientation dispersion and density (NODDI) indices and subtle tissue changes related to the intra- and extra-neurite compartment. We aimed to investigate how cannabis and NTP use among adolescents and young adults interacts to impact the white matter integrity microstructure.

View Article and Find Full Text PDF

Increased extra-neurite conductivity of brain in patients with Alzheimer's disease: A pilot study.

Psychiatry Res Neuroimaging

June 2024

Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-Gu, Seoul 05278, Republic of Korea; Department of Medicine, Kyung Hee University College of Medicine, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:

The objectives of this study were to investigate how the extra-neurite conductivity (EC) and intra-neurite conductivity (IC) were reflected in Alzheimer's disease (AD) patients compared with old cognitively normal (CN) people and patients with amnestic mild cognitive impairment (MCI) and to evaluate the association between those conductivity values and cognitive decline. To do this, high-frequency conductivity (HFC) at the Larmor frequency was obtained using MRI-based electrical property tomography (MREPT) and was decomposed into EC and IC using information of multi-shell multi-gradient direction diffusion tensor images. This prospective single-center study included 20 patients with mild or moderate AD, 25 patients with amnestic MCI, and 21 old CN participants.

View Article and Find Full Text PDF

Introduction: The subventricular zone (SVZ) represents one of the main adult brain neurogenesis niche. In-vivo imaging of SVZ is very challenging and little is known about MRI correlates of SVZ macro- and micro-structural injury in multiple sclerosis (MS) patients.

Methods: The aim of the present study is to evaluate differences in terms of volume and microstructural changes [as assessed with the novel Spherical Mean Technique (SMT) model, evaluating: Neurite Signal fraction (INTRA); Extra-neurite transverse (EXTRATRANS) and mean diffusivity (EXTRAMD)] in SVZ between relapsing-remitting (RR) or progressive (P) MS patients and healthy controls (HC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!