The advent of single-cell multi-omics technologies has revolutionized the landscape of preimplantation genetic diagnosis (PGD), offering unprecedented insights into the genetic, transcriptomic, and proteomic profiles of individual cells in early-stage embryos. This breakthrough holds the promise of enhancing the accuracy, efficiency, and scope of PGD, thereby significantly improving outcomes in assisted reproductive technologies (ARTs) and genetic disease prevention. This review provides a comprehensive overview of the importance of PGD in the context of precision medicine and elucidates how single-cell multi-omics technologies have transformed this field. We begin with a brief history of PGD, highlighting its evolution and application in detecting genetic disorders and facilitating ART. Subsequently, we delve into the principles, methodologies, and applications of single-cell genomics, transcriptomics, and proteomics in PGD, emphasizing their role in improving diagnostic precision and efficiency. Furthermore, we review significant recent advances within this domain, including key experimental designs, findings, and their implications for PGD practices. The advantages and limitations of these studies are analyzed to assess their potential impact on the future development of PGD technologies. Looking forward, we discuss the emerging research directions and challenges, focusing on technological advancements, new application areas, and strategies to overcome existing limitations. In conclusion, this review underscores the pivotal role of single-cell multi-omics in PGD, highlighting its potential to drive the progress of precision medicine and personalized treatment strategies, thereby marking a new era in reproductive genetics and healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bfgp/elae041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!