A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integration of four-dimensional proteomics and network pharmacology to reveal molecular mechanisms of multi-components multi-targets effects of Sini decoction on myocardial infarction. | LitMetric

Sini Decoction (SND) has been proven to be an effective formula to alleviate cardiac injury of myocardial infarction (MI). However, the potential mechanism of SND remains unclear. In this study, the MI rat model was established by ligating the left anterior descending coronary artery. A total of 17 SND-distributed components in heart were identified by using ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS). The combination of four-dimensional (4D) proteomics and network pharmacology was employed to find the potential targets for therapeutic intervention, and molecular docking and cellular thermal shift assay (CETSA) were used to reveal the interactions between the potential targets and the potential active components distributed in heart of SND. 33 SND-effected proteins were identified by 4D proteomics, which was involved in carbon metabolism, fatty acid metabolism, valine, leucine and isoleucine degradation, tricarboxylic acid (TCA) cycle and PPAR signaling pathway. 17 potential SND-targeted direct proteins were screened by comparing SND-effected proteins generated from 4D proteomics with the MI-related proteins obtained from disease database. The potential relationships between 17 components and 17 potential SND-targeted direct proteins were established by molecular docking analysis, in which songorine, benzoylhypaconine, hypaconine, formononetin, and liquiritigenin could be bound to the surrounding amino acid residues in the binding pocket of Mtor, Parp1, Acadm, Crat, and Aldh2. Then, CETSA analysis further confirmed that songorine and benzoylhypaconine could increase the heat stability of Mtor and Parp1 in cardiac tissue lysate, respectively, which suggested that there existed direct interactions between songorine and Mtor, and benzoylhypaconine and Parp1. In summary, this work concluded that SND produced cardioprotective effects mainly through preserving energy metabolism, also demonstrated that the combination of 4D proteomics and network pharmacology was a promising tool for uncovering the molecular mechanisms of multi-components multi-targets effects of TCM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116526DOI Listing

Publication Analysis

Top Keywords

proteomics network
12
network pharmacology
12
four-dimensional proteomics
8
molecular mechanisms
8
mechanisms multi-components
8
multi-components multi-targets
8
multi-targets effects
8
sini decoction
8
myocardial infarction
8
potential targets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!