The use of nano-chemicals in agriculture has been shown to enhance crop production through soil additions or foliar sprays. However, the accumulation pattern, translocation efficiency, mode of action of nanomaterials (NMs) via different application methods remain unclear. In this study, wheat was treated with CuO-NPs/CeO-NPs (50 and 100 nm) for 21 days using soil and foliar application separately. Foliar spray resulted in higher accumulation and more efficient translocation of NMs compared to soil addition. Smaller NMs exhibited higher accumulation and transfer capabilities under the same application method. The accumulation of CuO-NPs was approximately 20 times greater than that of CeO-NPs, particularly under the soil addition treatment. Scanning electron microscopy analysis demonstrated that NMs could directly enter wheat leaves via stomata during foliar application. Wheat growth was inhibited by roughly 15 % following CuO-NPs exposure, whereas no significant effects on growth were observed with CeO-NPs. By integrating nontargeted metabolomics analysis with targeted physiological characteristics assessments, it was revealed that CuO-NPs mainly disturbed nitrogen metabolism pathways and induced oxidative damage. In contrast, CeO-NPs enhanced carbohydrates related biological processes such as starch and sucrose metabolism, glycolysis, and TCA cycle, which are crucial for carbon metabolism. These findings suggest that the type of nanomaterial is a crucial factor to consider when evaluating their foliar or soil application in agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136357 | DOI Listing |
Nat Commun
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:
Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil and Environmental Engineering, Vanderbilt University, PMB 351826, Nashville, TN, 37235-1826, USA. Electronic address:
Increased usage of electric arc furnace (EAF) slags as soil amendments and surface aggregates raises concerns regarding heavy metal release. However, no standardized leaching characterization approach exists for EAF slags and other industrial materials. This study compares test results for three EAF slags using several testing approaches: (i) total content analysis, (ii) single-batch extractions (i.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!