Diagnosing and treating Acute Ischemic Stroke (AIS) within 0-24 h of onset is critical for patient recovery. While Diffusion-Weighted Imaging (DWI) and Computed Tomography Perfusion (CTP) are effective for early infarction identification, Non-Contrast CT (NCCT) remains the first-line imaging modality in emergency settings due to its efficiency and cost-effectiveness. In this work, to enhance lesion segmentation in NCCT using multi-modal information, we propose OS-AISeg, which integrates Offline knowledge distillation with Self-knowledge distillation to realize AIS segmentation. Initially, we trained a multi-modality teacher network by introducing uncertainty through Subjective Logic (SL) theory to reduce prediction errors and stabilize the training process. Subsequently, during student network training, we integrate confidence region knowledge guided by uncertainty weights and feature structure information guided by brain asymmetry. The former facilitates the acquisition of effective contextual information from paired predictions, while the latter leverages asymmetric activation maps to extract high-level structural content from multi-modality images. In self-knowledge distillation, we enhance the student network's learning of consistent global feature distributions by introducing mirrored NCCT images, thereby aiding the network in extracting knowledge directly from the modality. OS-AISeg was evaluated through five-fold cross-validation on two publicly available datasets, achieving a Dice value of 0.6196 on AISD and 0.4841 on ISLES2018. Additionally, experiments were also conducted on an external dataset, BraTS2019, as well as on a private stroke dataset named GLis. Strong correlations were observed between segmented Early Infarct (EI) and ground truth in volume analysis, validating the effectiveness of the proposed method in AIS diagnosis. The code for this project is available at https://github.com/Uni-Summer/OS-AISeg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.109312 | DOI Listing |
Food Res Int
January 2025
Tea Research Institute of Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Mechanical and Electronic Engineering, Shihezi University, Shihezi 832000, China. Electronic address:
Tea may be mixed with impurities during picking and processing, which can lower their quality. At present, the sorting of impurities in premium green tea mainly relies on manual labor, which is inefficient. In response to the technical challenges in this industry, this article uses deep learning technology to detect impurities in premium green tea.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
The diagnosis and early identification of intratracheal tumors relies on the experience of the operators and the specialists. Operations by physicians with insufficient experience may lead to misdiagnosis or misjudgment of tumors. To address this issue, a datasets for intratracheal tumor detection has been constructed to simulate the diagnostic level of experienced specialists, and a Knowledge Distillation-based Memory Feature Unsupervised Anomaly Detection (KD-MFAD) model was proposed to learn from this simulated experience.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China. Electronic address:
Pathological analysis of placenta is currently a valuable tool for gaining insights into pregnancy outcomes. In placental histopathology, multiple functional tissues can be inspected as potential signals reflecting the transfer functionality between fetal and maternal circulations. However, the identification of multiple functional tissues is challenging due to (1) severe heterogeneity in texture, size and shape, (2) distribution across different scales and (3) the need for comprehensive assessment at the whole slide image (WSI) level.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Informatics, University of Hamburg, Hamburg, Germany.
Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA.
In medical image segmentation, although multi-modality training is possible, clinical translation is challenged by the limited availability of all image types for a given patient. Different from typical segmentation models, modality-agnostic (MAG) learning trains a single model based on all available modalities but remains input-agnostic, allowing a single model to produce accurate segmentation given any modality combinations. In this paper, we propose a novel frame-work, MAG learning through Multi-modality Self-distillation (MAG-MS), for medical image segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!