The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated in some neurological disorders, and there is a need to elucidate the biological processes involved in the production of BMAA-containing proteins. In this study, growth of seven diatoms was suppressed under nitrogen limitation, however the production of BMAA-containing proteins was significantly increased in six of them, up to 5.22-fold increase in Thalassiosira andamanica. These variations were associated with reduced concentration of dissolved inorganic nitrogen (DIN) and changes in photosynthetic efficiency. Analytical results of non-targeted metabolomics showed that the obvious changes in amino acids, lipids and sugars may help diatoms to adjust growth and physiological parameters. Combined with previous transcriptomic data, a decrease in N-acetyl-D-glucosamine (GlcNAc) leads to an increase in N-glycan terminal modifications, which in turn increases protein misfolding. In addition, the reduced efficiency of vesicular transport in the COPII system may have exacerbated the accumulation of BMAA-containing proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.117197 | DOI Listing |
Mar Pollut Bull
December 2024
College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated in some neurological disorders, and there is a need to elucidate the biological processes involved in the production of BMAA-containing proteins. In this study, growth of seven diatoms was suppressed under nitrogen limitation, however the production of BMAA-containing proteins was significantly increased in six of them, up to 5.22-fold increase in Thalassiosira andamanica.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated as an important environmental trigger of neurodegenerative diseases in humans. However, the biosynthesis mechanism of BMAA in marine diatoms is still unknown. In the present study, the strain of diatom Thalassiosira minima almost lost the biosynthesis ability for BMAA after a long-term subculture in our laboratory.
View Article and Find Full Text PDFJ Hazard Mater
January 2023
Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been presumed as an environmental cause of human neurodegenerative disorders, such as Alzheimer's disease. Marine diatoms Thalassiosira minima are demonstrated here to produce BMAA-containing proteins in axenic culture while the isomer diaminobutyric acid was bacterially produced. In the co-culture with Cyanobacterium aponinum, diatom growth was inhibited but the biosynthesis of BMAA-containing proteins was stimulated up to seven times higher than that of the control group by cell-cell interactions.
View Article and Find Full Text PDFFront Aging Neurosci
February 2020
CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
The neurotoxin β--methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases.
View Article and Find Full Text PDFToxicon
June 2015
Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa. Electronic address:
β-N-methylamino-l-alanine (BMAA), produced by cyanobacteria, is a neurotoxin implicated in Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). BMAA concentrations in cyanobacteria are lower than those thought to be necessary to result in neurological damage thus bioaccumulation or biomagnification is required to achieve concentrations able to cause neurodegeneration. Many cyanobacteria produce BMAA and uptake routes into the food web require examination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!