Intragenomic variations of the harmful algal bloom species Phaeocystis globosa through single-strain metabarcoding analysis.

Mar Pollut Bull

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. Electronic address:

Published: December 2024

Recent studies demonstrated that the existence of high-levels intragenomic variations (IGVs) may lead to overinterpretation of species diversity and genetic diversity in metabarcoding analysis. In this study, IGVs of the V4 region of 18S rRNA gene (18S rDNA V4) in Phaeocystis globosa were ascertained through metabarcoding analysis results of 54 P. globosa strains. Each P. globosa strain harbored over 200 ASVs, in which one ASV was dominant with higher relative abundance than others. According to different dominant ASVs, 54 strains could be divided into two groups, suggesting the high genetic diversity of P. globosa. ASVs were shared in different strains, suggesting that IGVs were genuine existed, rather than sequencing errors. Metabarcoding analysis of field samples identified large numbers of IGVs. High levels of IGVs may be due to incomplete homogenization or existence of nonfunctional pseudogenes. An accurate understanding of IGVs is necessary for the correct interpretation of metabarcoding analysis results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.117180DOI Listing

Publication Analysis

Top Keywords

metabarcoding analysis
20
intragenomic variations
8
phaeocystis globosa
8
genetic diversity
8
igvs
6
globosa
5
metabarcoding
5
analysis
5
variations harmful
4
harmful algal
4

Similar Publications

The marine diatom genus comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified species along the Central and Southeastern Adriatic Sea, where monthly sampling carried out from February 2022 to February 2024 allowed for comprehensive species documentation.

View Article and Find Full Text PDF

Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings.

Int J Mol Sci

January 2025

Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.

Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.

View Article and Find Full Text PDF

Infective endocarditis (IE) is an infectious disease caused by the hematogenous dissemination of bacteria into heart valves. Improving the identification of pathogens that cause IE is important to increase the effectiveness of its therapy and reduce the mortality caused by this pathology. Ten native heart valves obtained from IE patients undergoing heart valve replacements were analyzed.

View Article and Find Full Text PDF

Monitoring biodiversity on a large scale, such as in hydropower reservoirs, poses scientific challenges. Conventional methods such as passive fishing gear are prone to various biases, while the utilization of environmental DNA (eDNA) metabarcoding has been restricted. Most eDNA studies have primarily focused on replicating results from traditional methods, which themselves have limitations regarding representativeness and bias.

View Article and Find Full Text PDF

Understanding insect behaviour and its underlying drivers is vital for interpreting changes in local biodiversity and predicting future trends. Conventional insect traps are typically limited to assess the composition of local insect communities over longer time periods and provide only limited insights into the effects of abiotic factors, such as light on species activity. Achieving finer temporal resolution is labour-intensive or only possible under laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!