Floquet Flux Attachment in Cold Atomic Systems.

Phys Rev Lett

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: October 2024

Flux attachment provides a powerful conceptual framework for understanding certain forms of topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous use as a theoretical tool, directly realizing flux attachment in a microscopic setting remains an open challenge. Here, we propose a simple approach to realizing flux attachment in a periodically driven (Floquet) system of either spins or hard-core bosons. We demonstrate that such a system naturally realizes correlated hopping interactions and provides a sharp connection between such interactions and flux attachment. Starting with a simple, nearest-neighbor, free boson model, we find evidence-from both a coupled-wire analysis and large-scale density matrix renormalization group simulations-that Floquet flux attachment stabilizes the bosonic integer quantum Hall state at 1/4 filling (on a square lattice), and the Halperin-221 fractional quantum Hall state at 1/6 filling (on a honeycomb lattice). At 1/2 filling on the square lattice, time-reversal symmetry is instead spontaneously broken and bosonic integer quantum Hall states with opposite Hall conductances are degenerate. Finally, we propose an optical-lattice-based implementation of our model on a square lattice and discuss prospects for adiabatic preparation as well as effects of Floquet heating.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.163403DOI Listing

Publication Analysis

Top Keywords

flux attachment
24
quantum hall
16
square lattice
12
floquet flux
8
fractional quantum
8
realizing flux
8
bosonic integer
8
integer quantum
8
hall state
8
filling square
8

Similar Publications

Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons.

View Article and Find Full Text PDF

Genetic variability in proteoglycan biosynthetic genes reveals new facets of heparan sulfate diversity.

Essays Biochem

December 2024

Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France.

Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PG) consist of a core protein to which the glycosaminoglycan (GAG) chains, HS or CS, are attached through a common linker tetrasaccharide. In the extracellular space, they are involved in the regulation of cell communication, assuring development and homeostasis. The HSPG biosynthetic pathway has documented 51 genes, with many diseases associated to defects in some of them.

View Article and Find Full Text PDF

Purification of harvested rainwater using gravity-driven ceramic membrane: A visualization study combining Micro-CT and COMSOL simulations.

J Environ Manage

December 2024

College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Rainwater harvesting is a viable solution for providing clean water in regions where conventional water sources are scarce or contaminated. However, the harvested rainwater often contains microorganisms, suspended particles, and other impurities that must be removed before consumption. Gravity-driven ceramic membranes (GDCMs) are an efficient choice for purifying harvested rainwater due to their energy-saving properties.

View Article and Find Full Text PDF

Floquet Flux Attachment in Cold Atomic Systems.

Phys Rev Lett

October 2024

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Flux attachment provides a powerful conceptual framework for understanding certain forms of topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous use as a theoretical tool, directly realizing flux attachment in a microscopic setting remains an open challenge. Here, we propose a simple approach to realizing flux attachment in a periodically driven (Floquet) system of either spins or hard-core bosons.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in brain PET scanners have improved spatial resolution, but head movement remains a primary cause of image blur, necessitating real-time motion tracking.
  • A new electromagnetic motion tracking (EMMT) system has been developed to enable precise motion correction for PET-CT imaging.
  • The EMMT integrates with existing PET scanners and uses advanced sensors to track head movements in real time, significantly enhancing imaging performance and accuracy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!