Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Characterization of the surface of iridium oxide (IrO) materials is of crucial importance to understand catalysts for the oxygen evolution reaction (OER) in low-temperature water electrolysis. While much of our current knowledge is based on well-defined single-crystal surfaces, surface-sensitive techniques like X-ray photoelectronic spectroscopy (XPS) are relevant to characterize the nanostructures considered. In this work, we describe a simple approach to use oxygen 1s spectra as an identifier of the amorphous/crystalline characteristics of iridium oxide structures from purely amorphous to purely crystalline. This conceptual approach was validated on seven commercially available materials. The presence of oxygen-associated defects in the surface moieties/species is shown even for purely crystalline materials with defect concentration increasing with greater amorphous character. This methodology provides us with an accessible descriptor of the catalyst surface as a baseline for further studies of the impact on catalytic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571203 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c02616 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!