Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While hydrogen-rich materials have been demonstrated to exhibit high T superconductivity at high pressures, there is an ongoing search for ternary, quaternary, and more chemically complex hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the Fm[Formula: see text]m RH[Formula: see text] structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH[Formula: see text]X[Formula: see text]Y] is based on a Pm[Formula: see text]m structure showing moderately high T, where the T estimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH[Formula: see text])[Formula: see text]X[Formula: see text]YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing T. The third class [(R[Formula: see text]H[Formula: see text])(R[Formula: see text]H[Formula: see text])X[Formula: see text]YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These design principles and associated model structures provide flexibility to optimize both T and the structural stability of complex hydrides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551333 | PMC |
http://dx.doi.org/10.1073/pnas.2413096121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!