Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability in adults. A central feature is progressive cartilage degradation and matrix fragment formation driven by the excessive production of matrix metalloproteinases (MMPs), such as MMP-13, by articular chondrocytes. Inflammatory factors, including interleukin 6 (IL-6), are secreted into the joint by synovial fibroblasts, and can contribute to pain and inflammation. No therapeutic exists that addresses the underlying loss of joint tissue in OA. To address this, we developed and utilized a cell-based high-throughput OA drug discovery platform using normal human chondrocytes treated with a recombinant fragment of the matrix protein fibronectin (FN-f) as a catabolic stimulus relevant to OA pathogenesis and a readout using a fluorescent MMP-13 responsive probe. The goal was to test this screening platform by identifying compounds that inhibited FN-f-induced MMP-13 production and determine if these compounds also inhibited catabolic signaling in OA chondrocytes and synovial fibroblasts. Two pilot screens of 1344 small molecules revealed five "hits" that strongly inhibited FN-f induced MMP-13 production with low cytotoxicity. These included RO-3306 (CDK1 inhibitor (i)), staurosporine (PKCi), trametinib (MEK1 and MEK2i), GSK-626616 (DYRK3i), and edicotinib (CSF-1Ri). Secondary testing using immunoblots and cells derived from OA joint tissues confirmed the ability of selected compounds to inhibit chondrocyte MMP-13 production and FN-f stimulated IL-6 production by synovial fibroblasts. These findings support the use of this high throughput screening assay for discovery of disease-modifying osteoarthritis drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530018 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308647 | PLOS |
Ageing Res Rev
December 2024
The First Clinical Medical College, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, China. Electronic address:
Triptolide (TP) is the primary pharmacological component of Tripterygium Glycosides (TG), which has anti-inflammatory, antiproliferative, and immunosuppressive properties, among other pharmacological actions, and has excellent potential for developing into a new DMARD. We have reviewed the effects and mechanisms of TP on immunosuppression, inhibiting synovial proliferation, and preventing articular bone destruction in the treatment of rheumatoid arthritis (RA), which is a common disease in the elderly in this paper. We have found that TP has regulatory effects on multiple vital cells in the above-mentioned pathological process of RA, such as monocytes/macrophages, dendritic cells, T cells, fibroblast-like synoviocytes, and osteoclasts.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Spinal Surgery, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
Background: Chondrocytes and synovial cells participate in the pathogenesis of osteoarthritis (OA). Nonetheless, the interactions and correlations between OA synovial cells and chondrocytes remain unclear. This study aims to elucidate the interactions and correlations between OA synovial cells and chondrocytes, so as to deepen understanding of OA pathogenesis.
View Article and Find Full Text PDFFront Immunol
December 2024
Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China.
Rheumatoid arthritis (RA) is an important autoimmune disease that affects synovial tissues, accompanied by redness, pain, and swelling as main symptoms, which will limit the quality of daily life and even cause disability. Multiple coupling effects among the various cells in the synovial micro-environment modulate the poor progression and development of diseases. Respectively, synovium is the primary target tissue of inflammatory articular pathologies; synovial hyperplasia, and excessive accumulation of immune cells lead to joint remodelling and destroyed function.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China.
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany; Department of Orthopaedic Surgery, Asklepiosklinikum, Bad Abbach, Germany.
Extracellular vesicles from Rheumatoid arthritis (RA) derived synovial fibroblasts (EVs) have been implicated in the pathogenesis of RA, acting as mediators of cell-to-cell communication. This study aimed to elucidate the role of the chemokine receptor CCR5 and EVs positive for CCR5 (EVs) in RA, focusing on their impact on cartilage destruction and bone erosion in a rat model of Adjuvant-induced arthritis (AIA). In vivo experiments were conducted using AIA rats, treated with either EVs, EVs without CCR5 (EVs), or EVs which encapsulated the CCR5 antagonist Maraviroc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!