This study aimed to develop a mathematical model to predict the release profile and antibacterial efficacy of a vancomycin delivery system integrated with poly(L-lactic acid)-coated bone implants specifically designed for bone plates. Using Fickian diffusion principles within an ANSYS-CFX computational fluid dynamic model, we validated the model against our in vitro vancomycin release and agar diffusion studies, as well as previously published in vivo data, confirming the reliability of the model. The model predictions demonstrated the effectiveness of the system in inhibiting bacterial growth in surrounding tissue with no observed toxicity, with a peak vancomycin concentration of 0.95 mg/ml at 6 hours, followed by a decrease to levels that remained effective for antibacterial activity. Furthermore, a sensitivity analysis revealed that the model is particularly sensitive to the half-life of vancomycin, with a maximum sensitivity index of 0.8, indicating its greater impact on the prediction accuracy than the diffusion coefficient, which has a maximum sensitivity index of 0.5. Therefore, precise input of vancomycin's half-life is critical for accurate predictions. These findings offer substantial support for the efficacy of the local delivery system as a promising therapeutic approach against implant-associated infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530042 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311521 | PLOS |
J Infect Dis
January 2025
Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA 92697, USA.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is associated with high rates of treatment failure, even when antibiotics showing in vitro susceptibility are used. Early optimization of therapy is crucial to reduce morbidity and mortality. Building on our previous research on carbapenem therapy for methicillin-susceptible S.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K)-responsive nanoparticles gated with K-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K-responsive polymers, the grafted gates based on these polymers could recognize high K concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
This paper introduces an evidence-based, design-of-experiments (DoE) approach to analyze and optimize drug delivery systems, ensuring that release aligns with the therapeutic window of the medication. First, the effective factors and release data of the system are extracted from the literature and meta-analytically undergo regression modeling. Then, the interaction and correlation of the factors to each other and the release amount are quantitatively assessed.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China. Electronic address:
As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Periodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India.
Chronic osteomyelitis of the maxillofacial bones (i.e., jaw bones) is a persistent infection that requires effective treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!