Thyroid syndrome, a complex endocrine disorder, involves the dysregulation of the thyroid gland, impacting vital physiological functions. Common causes include autoimmune disorders, iodine deficiency, and genetic predispositions. The effects of thyroid syndrome extend beyond the thyroid itself, affecting metabolism, energy levels, and overall well-being. Thyroid syndrome is associated with severe cases of thyroid dysfunction, highlighting the potentially life-threatening consequences of untreated or inadequately managed thyroid disorders. This research aims to propose an advanced meta-learning approach for the timely detection of Thyroid syndrome. We used a standard thyroid-balanced dataset containing 7,000 patient records to apply advanced machine-learning methods. We proposed a novel meta-learning model based on a unique stack of K-Neighbors (KN) and Random Forest (RF) models. Then, a meta-learning Logistic Regression (LR) model is built based on the collective experience of stacked models. For the first time, the novel proposed KRL (KN-RF-LR) method is employed for the effective diagnosis of Thyroid syndrome. Extensive research experiments illustrated that the novel proposed KRL outperformed state-of-the-art approaches, achieving an impressive performance accuracy of 98%. We vindicated the performance scores through k-fold cross-validation and enhanced performance using hyperparameter tuning. Our research revolutionized the timely detection of thyroid syndrome, contributing to the enhancement of human life by reducing thyroid mortality rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530063PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312313PLOS

Publication Analysis

Top Keywords

thyroid syndrome
28
thyroid
12
diagnosis thyroid
8
timely detection
8
detection thyroid
8
novel proposed
8
proposed krl
8
syndrome
7
novel
4
novel meta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!