Soil erosion by water is a serious problem in Ethiopia, contributing to diminishing crop yields and food shortages. Apart from understanding the magnitude, risk, and spatial distribution of the problem, identifying erosion hotspot areas is essential for effectively reversing the problem. This study aims to identify erosion hotspots in the Gotu watershed, in northeastern Ethiopia, using the revised universal soil loss equation (RUSLE) and incorporating local farmers' perspectives to prioritize conservation efforts. The RUSLE model reveals that 29,744.3 metric tons of soil is lost annually from the Gotu watershed, with an average loss of 65.3 to t ha⁻ year⁻. The main contributing factors to soil erosion in the watershed include undulating topography, loss of plant cover, and continuous cultivation. The highest soil loss rates (> 80 t ha⁻ year⁻) were found in the western, northern, and southern parts of the watershed, where cultivation occurs on moderate to steep slopes with sparse vegetation cover. These areas should be prioritized for conservation interventions. Farmers identified poor crop yields and damaged conservation structures as key indicators of soil erosion prevalence in the watershed. Increasing farmer's understanding of soil erosion and the importance of soil and water conservation is essential for effectively controlling soil erosion and improving food security in the area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13338-y | DOI Listing |
Nat Commun
January 2025
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
Fires alter the stability of organic matter and promote soil erosion which threatens the fundamental coupling of soil biogeochemical cycles. Yet, how soil biogeochemistry and its environmental drivers respond to fire remain virtually unknown globally. Here, we integrate experimental observations and random forest model, and reveal significant divergence in the responses of soil biogeochemical attributes to fire, including soil carbon (C), nitrogen (N), and phosphorus (P) contents worldwide.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.
The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Biosciences, University of Milan (UNIMI), Milan, Italy.
Oryza sativa is one of the most important crops and a food source for billions of people. Anthropic global warming, soil erosion, and unstable environmental conditions affect both its vegetative and reproductive growth, and consequently the final yield of its cultivation. The reproductive phase starts with the transition of apical meristem from vegetative to reproductive, which develops into a panicle, proceeds through the differentiation of the floret, and, after fertilization, the filling of the grain.
View Article and Find Full Text PDFHeliyon
January 2025
Madda Walabu University, College of Agriculture, Forestry Department, P.O.Box 247, Bale Robe, Ethiopia.
Context: Tef [ ((Zucc.) Trotter)] is a remarkable indigenous crop, highly adaptive and resilient to erratic and extreme climatic and soil conditions. It is a major staple food in Ethiopia and is usually cultivated for household consumption and the generation of income.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Sciences & Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran.
Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!