We propose a method for controlling the time-varying polarization of optical pulses by introducing a quarter-wave plate into a 4-f pulse shaper and using a spatial light modulator to impose a group delay. This setup enables the polarization state of the incident pulse to vary over time. Specifically, for linearly chirped incident pulses, the polarization ellipse twists uniformly over time, while its ellipticity changes monotonically. As the group delay increases, the pulse intensity gradually splits in the time domain, transitioning from a single pulse with uniformly twisting polarization to two circularly polarized pulses with opposite chirality. We provide a detailed and comprehensive explanation of this modulation process using analytical expressions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.539408 | DOI Listing |
Nano Lett
January 2025
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States.
Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.
View Article and Find Full Text PDFChiral amines and amino alcohols form an important category of molecules employed in the designing of new drugs and catalyst. Herein, we present a helically-twisted stereodynamic dialdehyde probe 1 for the determining of absolute configuration, and enantiomeric excess of chiral amine and amino alcohols. Probe 1 is based on the pyridine-2,6-dicarboxamide (PDC) core and undergoes rapid interconversion between the P- and M- conformers.
View Article and Find Full Text PDFACS Nano
January 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!