This study examines the chemical reactivity of niobium clusters with carbon dioxide (CO), with an emphasis on the analysis of the ensuing products NbO and NbO, which show up in the cationic and anionic mass spectra, respectively. Using density functional theory (DFT) calculations, we demonstrate the reactivity of the Nb clusters with CO and reveal distinct stabilization mechanisms for the two prominent products. The stability of NbO is determined by the existence of ten π bonds pertaining to π-electron delocalization, which conforms to the π electron configuration model. Despite having only a one-atom distinction, NbO exhibits superatomic electron shells embodying superatom stability. The divergent stabilizing mechanisms found in NbO and NbO illustrate the intricate nature of cluster chemistry and the significance of electronic structure in governing cluster stability and reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp03279a | DOI Listing |
J Comput Chem
January 2025
Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
The strength and cooperative energy of chalcogen and dihydrogen bonds in some ABC triad systems of the types XHTe…NCH…HY (X = F, Cl, Br, I, H; Y = Li, Na, BeH, MgH) and FHCh…NCH…HNa (Ch = Te, Se, S) were computed and compared at several levels of theory. All resulting data showed that the strengths of chalcogen (Te…N) and dihydrogen (H…H) bonds increase in the order of H < I < Br < Cl < F, and Be < Mg < Li < Na, respectively. Then, the comparison of data for the FHTe…NCH…HY, FHSe…NCH…HNa, and FHS…NCH…HNa triads indicated that the interaction, stabilization, and cooperativity energies decrease in the order of Te > Se > S.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia.
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional de Tucuman Facultad de Bioquimica Quimica y Farmacia, Chemistry, Av. Kirchner 1900, 4000, San Miguel de Tucumán, ARGENTINA.
(Z)-3-butylamino-4,4,4-trifluoro-1-(2-hydroxyphenyl)but-2-en-1-one (1), a new β-aminoenone, has been investigated in terms of its intra- and intermolecular interactions. Vibrational, electronic and NMR spectroscopies were used for the characterization, while X-ray diffraction methods afforded the determination of the crystal structure. The compound is arranged in the crystal lattice as centre-symmetric H-bonded dimeric aggregates (C2/c monoclinic space group).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
(K,Na)NbO-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d ∼ 807 pC·N, along with a high longitudinal electromechanical coupling factor (k ∼ 88%) and Curie temperature (T ∼ 245 °C) in the (K,Na)(NbSb)O-BiNaZrO-BiFeO (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K/Na ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!