Respiratory syncytial virus (RSV) selectively targets ciliated cells in human bronchial epithelium and can cause bronchiolitis and pneumonia, mostly in infants. To identify molecular targets of intervention during RSV infection in infants, we investigated how age regulates RSV interaction with the bronchial epithelium barrier. Employing precision-cut lung slices and air-liquid interface cultures generated from infant and adult human donors, we found robust RSV virus spread and extensive apoptotic cell death only in infant bronchial epithelium. In contrast, adult bronchial epithelium showed no barrier damage and limited RSV infection. Single nuclear RNA-Seq revealed age-related insufficiency of an antiapoptotic STAT3 activation response to RSV infection in infant ciliated cells, which was exploited to facilitate virus spread via the extruded apoptotic ciliated cells carrying RSV. Activation of STAT3 and blockade of apoptosis rendered protection against severe RSV infection in infant bronchial epithelium. Lastly, apoptotic inhibitor treatment of a neonatal mouse model of RSV infection mitigated infection and inflammation in the lung. Taken together, our findings identify a STAT3-mediated antiapoptosis pathway as a target to battle severe RSV disease in infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527452 | PMC |
http://dx.doi.org/10.1172/JCI183978 | DOI Listing |
Chron Respir Dis
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
A 57-year-old female presented with a chief complaint of cough, with productive yellow sputum particularly severe in the morning. Bronchoscopy revealed inflammatory changes in both main bronchi, with abundant white purulent secretions and necrotic material adhering to the luminal surface. Histopathological examination showed chronic inflammatory changes in the mucosal tissue, with mild hyperplasia of the local squamous epithelium and evidence of keratinization in the surrounding area, consistent with a diagnosis of tracheal mucosal keratosis.
View Article and Find Full Text PDFAllergy
January 2025
Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK.
Background: Airway remodelling is a feature of severe asthma with airway epithelial damage observed frequently. We evaluated the role of WNT5a and TGF-β in asthmatic airway biopsies and in sputum and bronchial brushings assessed their role in remodelling.
Methods: WNT5a and TGF-β protein expression were assessed in the lamina propria epithelium of people with asthma (GINA 1-3, n-8 and GINA 4-5, n-14) and healthy subjects (n-9), alongside relevant remodelling markers.
Toxicol Appl Pharmacol
December 2024
College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea. Electronic address:
In the current study, we dosed Didecyldimethylammonium chloride (DDAC) in mice by pharyngeal aspiration for 28 days or 90 days (weekly) and tried to elucidate the relationship between lamellar body formation and the lesions. When exposed for 28 days (0, 5, 10, 50, and 100 μg/head), all the mice in the 50 and 100 μg/head groups died since Day 2 after the third dosing (Day 16 after the first dosing). Edema, necrosis of bronchiolar and alveolar epithelium, and fibrinous exudate were observed in the lungs of all the dead mice, and chronic inflammatory lesions were observed in the lung tissues of alive mice.
View Article and Find Full Text PDFEur Respir Rev
October 2024
Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated.
View Article and Find Full Text PDFImmun Inflamm Dis
December 2024
Department of Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China.
Background: Chronic obstructive pulmonary disease (COPD), a prevalent respiratory condition, is characterized by long-term airway inflammation, which can lead to airway remodeling and persistent airflow restriction. Exposure to cigarette smoke is known as a major contributor to COPD development. Research has confirmed that ferroptosis and m6A modification are closely related to various inflammatory-related diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!