AI Article Synopsis

  • Peters anomaly, a leading cause of congenital corneal opacity, is linked to corneal-lenticular adhesion and is tied to unidentified mutations and a complex disease mechanism.
  • Abl kinases have been discovered as key regulators of FGF signaling, with their genetic deletion allowing lens formation even when FGF is missing, and their role appears independent of traditional ERK signaling pathways.
  • The study suggests that targeting the Ptpn12-p130Cas pathway, which is influenced by Abl kinases, could offer therapeutic possibilities for addressing Peters anomaly by improving lens vesicle separation dynamics.

Article Abstract

Peters anomaly, the most common cause of congenital corneal opacity, stems from corneal-lenticular adhesion. Despite numerous identified mutations, a cohesive molecular framework of the disease's etiology remains elusive. Here, we identified Abl kinases as pivotal regulators of FGF signaling, as genetic ablation of Abl kinases restores lens induction even in the absence of FGF signaling. Intriguingly, both kinase deficiency and increased FGF-Ras activity result in Peters anomaly independent of ERK signaling, which can be rescued by allelic deletion of Abl substrate, Crk. However, contrary to the prevailing belief that Abl kinases regulate Crk proteins by direct phosphorylation, mutations at Abl kinase phosphorylation sites on Crk and CrkL did not yield any observable effects. Instead, our findings reveal that Abl kinases phosphorylate Ptpn12, which in turn inhibits p130Cas phosphorylation and Crk recruitment, crucial for Rho GTPases activation and cytoskeletal dynamics. Consequently, Abl kinase deficiency reduces actomyosin contractility within the lens vesicle and genetically interacts with RhoA inhibition. Conversely, deletion mitigates Peters anomaly in models with aberrant FGF, Abl kinase and RhoA signaling. Our results demonstrate that Abl kinases regulate FGF signaling to balance RhoA and Rac1 activity via the Ptpn12-p130Cas pathway, suggesting that targeting tension-mediated lens vesicle separation could be a therapeutic strategy for Peters anomaly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526961PMC
http://dx.doi.org/10.1101/2024.10.24.619064DOI Listing

Publication Analysis

Top Keywords

abl kinases
24
peters anomaly
20
fgf signaling
16
kinases regulate
12
abl kinase
12
abl
10
regulate fgf
8
kinase deficiency
8
lens vesicle
8
signaling
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!