Understanding how mutations arise and spread through individuals and populations is fundamental to evolutionary biology. Most organisms have a life cycle with unicellular bottlenecks during reproduction. However, some organisms like plants, fungi, or colonial animals can grow indefinitely, changing the manner in which mutations spread throughout both the individual and the population. Furthermore, clonally reproducing organisms may also achieve exceedingly long lifespans, making somatic mutation an important mechanism of creating heritable variation for Darwinian evolution by natural selection. Yet, little is known about intra-organism mutation rates and evolutionary trajectories in long-lived species. Here, we study the Pando aspen clone, the largest known quaking aspen () clone founded by a single seedling and thought to be one of the oldest studied organisms. Aspen reproduce vegetatively via new root-borne stems forming clonal patches, sometimes spanning several hectares. To study the evolutionary history of the Pando clone, we collected and sequenced over 500 samples from Pando and neighboring clones, as well as from various tissue types within Pando, including leaves, roots, and bark. We applied a series of filters to distinguish somatic mutations from the pool of both somatic and germline mutations, incorporating a technical replicate sequencing approach to account for uncertainty in somatic mutation detection. Despite root spreading being spatially constrained, we observed only a modest positive correlation between genetic and spatial distance, suggesting the presence of a mechanism preventing the accumulation and spread of mutations across units. Phylogenetic models estimate the age of the clone to between ~16,000-80,000 years. This age is generally corroborated by the near-continuous presence of aspen pollen in a lake sediment record collected from Fish Lake near Pando. Overall, this work enhances understanding of mutation accumulation and dispersal within and between ramets of long-lived, clonally-reproducing organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526904PMC
http://dx.doi.org/10.1101/2024.10.19.619233DOI Listing

Publication Analysis

Top Keywords

somatic mutations
8
mutations spread
8
somatic mutation
8
aspen clone
8
mutations
6
pando
6
organisms
5
mosaic somatic
4
mutations earth's
4
earth's oldest
4

Similar Publications

Implementing Mutational Epidemiology on a Global Scale: Lessons from Mutographs.

Cancer Discov

January 2025

Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom.

The Mutographs Cancer Grand Challenge team aimed to discover unknown causes of cancer through mutational epidemiology, an alliance of cancer epidemiology and somatic genomics. By generating whole-genome sequences from thousands of cancers and normal tissues from more than 30 countries on five continents, it discovered unsuspected mutagenic exposures affecting millions of people, raised the possibility that some carcinogens act by altering forces of selection in tissue microenvironments rather than by mutagenesis, and demonstrated changes to the direction of somatic evolution in normal cells of the human body in response to exogenous exposures and noncancer diseases. See related article by Bressan et al.

View Article and Find Full Text PDF

Prostate cancer (PC) represents one of the leading causes of cancer-related morbidity and mortality in men, requiring further understanding to improve diagnosis and treatment. Germline BRCA1/2 mutations, primarily identified in other hereditary cancers, confer an increased risk of developing PC; thus, testing is essential to assess cancer risk, guiding preventive strategies and screening. Recently, somatic BRCA1/2 mutations have emerged as pivotal predictive biomarkers of responsiveness to the poly ADP-ribose polymerase (PARP) inhibitors.

View Article and Find Full Text PDF

Somatic and genetic mutations in glutathione peroxidases (GPxs), including GPx7 and GPx8, have been linked to intellectual disability, microcephaly, and various tumors. GPx7 and GPx8 evolved the latest among the GPx enzymes and are present in the endoplasmic reticulum. Although lacking a glutathione binding domain, GPx7 and GPx8 possess peroxidase activity that helps the body respond to cellular stress.

View Article and Find Full Text PDF

Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!