DNA transactions introduce torsional constraints that pose an inherent risk to genome integrity. While topoisomerase 1 (TOP1) activity is essential for removing DNA supercoiling, aberrant stabilization of TOP1:DNA cleavage complexes (TOP1ccs) can result in cytotoxic DNA lesions. What protects genomic hot spots of topological stress from aberrant TOP1 activity remains unknown. Here, we identify chromatin context as an essential means to coordinate TOP1cc resolution. Through its ability to bind poly(ADP-ribose) (PAR), a protein modification required for TOP1cc repair, the histone variant macroH2A1.1 establishes a TOP1-permissive chromatin environment, while the alternatively spliced macroH2A1.2 isoform is unable to bind PAR or protect from TOP1ccs. By visualizing transcription-induced topological stress in single cells, we find that macroH2A1.1 facilitates PAR-dependent recruitment of the TOP1cc repair effector XRCC1 to protect from ssDNA damage. Impaired macroH2A1.1 splicing, a frequent cancer feature, was predictive of increased sensitivity to TOP1 poisons in a pharmaco-genomic screen in breast cancer cells, and macroH2A1.1 inactivation mirrored this effect. Consistent with this, low macroH2A1.1 expression correlated with improved survival in cancer patients treated with TOP1 inhibitors. We propose that macroH2A1 alternative splicing serves as an epigenetic modulator of TOP1-associated genome maintenance and a potential cancer vulnerability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526978PMC
http://dx.doi.org/10.1101/2024.10.22.619113DOI Listing

Publication Analysis

Top Keywords

cancer vulnerability
8
top1 activity
8
topological stress
8
top1cc repair
8
cancer
5
macroh2a11
5
epigenetic control
4
control topoisomerase
4
topoisomerase activity
4
activity presents
4

Similar Publications

Comprehensive Cellular Senescence Evaluation to Aid Targeted Therapies.

Research (Wash D C)

January 2025

State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China.

Drug resistance to a single agent is common in cancer-targeted therapies, and rational drug combinations are a promising approach to overcome this challenge. Many Food and Drug Administration-approved drugs can induce cellular senescence, which possesses unique vulnerabilities and molecular signatures. However, there is limited analysis on the effect of the combination of cellular-senescence-inducing drugs and targeted therapy drugs.

View Article and Find Full Text PDF

Background: Changes in functional genetic polymorphisms may increase or decrease the risk of cancer in patients. Nowadays, the association between polymorphisms in the interleukin-8 (IL-8) gene and the susceptibility of cancer risk have been investigated in many studies, however, above relationships remain unclear.

Aim: The current study aims to comprehensively evaluate the association between IL-8 gene six polymorphisms and the whole cancer risk, especially -251 polymorphism and gastric cancer.

View Article and Find Full Text PDF

Background: Recent decades have witnessed tangible improvements in childhood cancer survival. However, the prognosis for children with congenital heart disease (CHD), the most prevalent birth defect, remains unclear. Due to improved survival of CHD and childhood cancer, evaluating outcomes within this intersection is important for clinical practice.

View Article and Find Full Text PDF

PURPOSE Oncogenic mutations in KRAS have been identified in > 85% of pancreatic ductal adenocarcinoma (PDAC) cases. G12D, G12V, and G12R are the most frequent variants. Using large clinical and genomic databases, this study characterizes prognostic and molecular differences between KRAS variants, focusing on KRAS G12D and G12R.

View Article and Find Full Text PDF

HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!