Background: The optimal management of CSF drainage in acute hydrocephalus, in particular when to initiate drain weaning, remains uncertain. This study aimed to evaluate the impact of timing and method of drain weaning on patient outcomes.
Methods: This prospective observational study in a large-volume tertiary neuroscience centre included all adult patients who required temporary CSF drainage for acute hydrocephalus of any cause between January 2020 and March 2021. Contemporaneous data collection was conducted, including patient demographics, time to clamp, weaning methods, and clinical outcomes of hospital length of stay (LOS), rate of shunt insertion, drain-related infections, and mechanical complications. Univariate and multivariate statistical analyses were performed to identify the independent associations of timing-related factors.
Results: A total of 69 patients were included (mean age = 59.4 years). A total of 59% had CSF diversion for aneurysmal subarachnoid haemorrhage, and 88% had EVD drainage. The length of drainage prior to the first clamp was significantly associated with the overall length of drainage ( < 0.0001), LOS ( = 0.004), and time to shunt ( = 0.02) following multivariate adjustment. For each day delayed in initiating the drain challenge, the overall LOS increased by an additional 1.25 days. There was no association between the weaning method and LOS, the rate of shunting, or CNS infection; however, those in the gradually weaned group had more mechanical complications, such as drain blockage or CSF leakage, than those rapidly weaned ( = 0.03) after adjustment.
Discussion: This study recommends challenging the drain early via a rapid wean to reduce LOS, mechanical complications, and possibly infections. The consequences of temporary CSF diversion have significant implications at financial and patient levels, but the quality of evidence regarding weaning remains poor. Further randomised multicentre studies and national databases of practice are required to allow definitive conclusions to be drawn.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503252 | PMC |
http://dx.doi.org/10.3390/neurosci5040030 | DOI Listing |
J Exp Med
February 2025
Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA.
Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy.
: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. : We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022-April 2024).
View Article and Find Full Text PDFBrain Sci
December 2024
School of Mechanical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Background/objectives: Cerebrospinal infusion studies indicate that cerebrospinal fluid outflow resistance (R) is elevated in normal pressure hydrocephalus (NPH). These studies assume that the cerebrospinal formation rate (CSF) does not vary during the infusion. If the CSF were to increase during the infusion then the R would be overestimated.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Neurosurgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy.
: Postoperative cerebrospinal fluid (CSF) fistulas remain a significant concern in spinal neurosurgery, particularly following dural closure. The incidence of dural tears during spinal surgery is estimated between 1.6% and 10%.
View Article and Find Full Text PDFCureus
November 2024
Anesthesiology and Pain Medicine, Harborview Medical Center, Seattle, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!