AI Article Synopsis

  • The study investigates the interactions between the chemotherapy drug capecitabine (CAP) and gut microbiota in colorectal cancer patients, focusing on how these interactions may affect treatment side effects.
  • Research involved a cohort of 56 patients, analyzing stool samples and using advanced sequencing techniques to observe changes in gut microbial composition during CAP treatment.
  • Findings indicate that CAP alters gut bacteria, promoting genes related to vitamin K2 production, which appears to protect against drug toxicity, suggesting potential for microbiome profiling to predict chemotherapy side effects.

Article Abstract

Purpose: Unpredictable chemotherapy side effects are a major barrier to successful treatment. Cell culture and mouse experiments indicate that the gut microbiota is influenced by and influences anti-cancer drugs. However, metagenomic data from patients paired to careful side effect monitoring remains limited. Herein, we focus on the oral fluoropyrimidine capecitabine (CAP). We investigate CAP-microbiome interactions through metagenomic sequencing of longitudinal stool sampling from a cohort of advanced colorectal cancer (CRC) patients.

Methods: We established a prospective cohort study including 56 patients with advanced CRC treated with CAP monotherapy across 4 centers in the Netherlands. Stool samples and clinical questionnaires were collected at baseline, during cycle 3, and post-treatment. Metagenomic sequencing to assess microbial community structure and gene abundance was paired with transposon mutagenesis, targeted gene deletion, and media supplementation experiments. An independent US cohort was used for model validation.

Results: CAP treatment significantly altered gut microbial composition and pathway abundance, enriching for menaquinol (vitamin K2) biosynthesis genes. Transposon library screens, targeted gene deletions, and media supplementation confirmed that menaquinol biosynthesis protects from drug toxicity. Microbial menaquinol biosynthesis genes were associated with decreased peripheral sensory neuropathy. Machine learning models trained in this cohort predicted hand-foot syndrome and dose reductions in an independent cohort.

Conclusion: These results suggest treatment-associated increases in microbial vitamin biosynthesis serve a chemoprotective role for bacterial and host cells, with implications for toxicities outside the gastrointestinal tract. We provide a for the use of microbiome profiling and machine learning to predict drug toxicities across independent cohorts. These observations provide a foundation for future human intervention studies, more in-depth mechanistic dissection in preclinical models, and extension to other cancer treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527039PMC
http://dx.doi.org/10.1101/2024.10.11.24315249DOI Listing

Publication Analysis

Top Keywords

drug toxicity
8
colorectal cancer
8
metagenomic sequencing
8
targeted gene
8
media supplementation
8
vitamin biosynthesis
8
biosynthesis genes
8
menaquinol biosynthesis
8
machine learning
8
microbial
5

Similar Publications

Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation.

Front Immunol

December 2024

Tumor Vaccine and Biotechnology Branch, Office of Cellular Therapy and Human Tissues, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration (U.S. FDA), Silver Spring, MD, United States.

Introduction: CAR-T cell therapy is associated with life-threatening inflammatory toxicities, partly due to the activation and secretion of inflammatory cytokines by bystander myeloid cells (BMCs). However, due to limited clinical data, it is unclear whether CAR-NK cells cause similar toxicities.

Methods: We characterized the soluble factors (SFs) released by activated human CAR-T and CAR-NK cells and assessed their role in BMC activation (BMCA).

View Article and Find Full Text PDF

Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).

View Article and Find Full Text PDF

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

Front Chem

December 2024

African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.

Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

View Article and Find Full Text PDF

High anion gap metabolic acidosis (HAGMA) is a common biochemical abnormality in hospitalized patients, often linked to conditions such as lactic acidosis, renal failure, or drug toxicity. A rare etiology, 5-oxoprolinuria, resulting from acetaminophen use, malnutrition, and sepsis, is increasingly recognized in critically ill patients. We report a 29-year-old male with a history of intellectual disability and normal baseline kidney function who was admitted with acute necrotizing pancreatitis and developed severe metabolic acidosis and acute kidney injury (AKI).

View Article and Find Full Text PDF

Bioorthogonal chemistry, recognized as a highly efficient tool in chemical biology, has shown significant value in cancer treatment. The primary objective is to develop efficient delivery strategies to achieve enhanced bioorthogonal drug treatment for tumors. Here, Janus microparticles (JMs) loaded with cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) triggers are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!