Recent Advances in the Wearable Devices for Monitoring and Management of Heart Failure.

Rev Cardiovasc Med

Department of Biomedical Engineering, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054 Chengdu, Sichuan, China.

Published: October 2024

AI Article Synopsis

  • Heart failure (HF) is a serious condition with high risks, but early diagnosis and treatment can significantly improve patient quality of life and reduce hospital admissions.
  • Wearable technology has emerged as a game-changer in monitoring and managing HF, allowing for continuous tracking of patients' vital signs and symptoms.
  • However, integrating these devices into clinical practice poses challenges related to performance, regulations, and data privacy that need to be addressed.

Article Abstract

Heart failure (HF) is an acute and degenerative condition with high morbidity and mortality rates. Early diagnosis and treatment of HF can significantly enhance patient outcomes through admission and readmission reduction and improve quality of life. Being a progressive condition, the continuous monitoring of vital signs and symptoms of HF patients to identify any deterioration and to customize treatment regimens can be beneficial to the management of this disease. Recent breakthroughs in wearable technology have revolutionized the landscape of HF management. Despite the potential benefits, the integration of wearable devices into HF management requires careful consideration of technical, clinical, and ethical challenges, such as performance, regulatory requirements and data privacy. This review summarizes the current evidence on the role of wearable devices in heart failure monitoring and management, and discusses the challenges and opportunities in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522764PMC
http://dx.doi.org/10.31083/j.rcm2510386DOI Listing

Publication Analysis

Top Keywords

wearable devices
12
heart failure
12
monitoring management
8
management
5
advances wearable
4
devices monitoring
4
management heart
4
failure heart
4
failure acute
4
acute degenerative
4

Similar Publications

Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

Ultrathin, Lightweight Materials Enabled Wireless Data and Power Transmission in Chip-Less Flexible Electronics.

ACS Mater Au

January 2025

Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.

The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios.

View Article and Find Full Text PDF

Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.

ACS Mater Au

January 2025

Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.

View Article and Find Full Text PDF

Porous structures offer several key advantages in energy harvesting, making them highly effective for enhancing the performance of piezoelectric and triboelectric nanogenerators (PENG and TENG). Their high surface area-to-volume ratio improves charge accumulation and electrostatic induction, which are critical for efficient energy conversion. Additionally, their lightweight and flexible nature allows for easy integration into wearable and flexible electronics.

View Article and Find Full Text PDF

Menstrual variations of sleep-wake rhythms in healthy women.

Sleep Biol Rhythms

January 2025

Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-Ku, Kawasaki, Kanagawa 214-8571 Japan.

The ovarian steroid hormones, estrogen and progesterone, the levels of which fluctuate dynamically with the estrous cycle, alter circadian behavioral rhythms in mammals. However, it remains unclear whether the sleep-wake rhythm fluctuates with the menstrual cycle in humans. To ascertain the relationship between the menstrual cycle and sleep-wake rhythms, we evaluated the objective and long-term sleep-wake rhythms of ten healthy women using a recently developed wearable device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!