Live cell fluorescence microscopy-an end-to-end workflow for high-throughput image and data analysis.

Biol Methods Protoc

Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic.

Published: October 2024

Fluorescence microscopy images of biological samples contain valuable information but require rigorous analysis for accurate and reliable determination of changes in protein localization, fluorescence intensity, and morphology of the studied objects. Traditionally, cells for microscopy are immobilized using chemicals, which can introduce stress. Analysis often focuses only on colocalization and involves manual segmentation and measurement, which are time-consuming and can introduce bias. Our new workflow addresses these issues by gently immobilizing cells using a small agarose block on a microscope coverslip. This approach is suitable for cell-walled cells (yeast, fungi, plants, bacteria), facilitates their live imaging under conditions close to their natural environment and enables the addition of chemicals during time-lapse experiments. The primary focus of the protocol is on the presented analysis workflow, which is applicable to virtually any cell type-we describe cell segmentation using the Cellpose software followed by automated analysis of a multitude of parameters using custom-written Fiji (ImageJ) macros. The results can be easily processed using the provided R markdown scripts or available graphing software. Our method facilitates unbiased batch analysis of large datasets, improving the efficiency and accuracy of fluorescence microscopy research. The reported sample preparation protocol and Fiji macros were used in our recent publications: (2022), DOI: 10.1128/spectrum.01961-22; (2022), DOI: 10.1128/spectrum.02489-22; (2023), DOI: 10.1242/jcs.260554.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525050PMC
http://dx.doi.org/10.1093/biomethods/bpae075DOI Listing

Publication Analysis

Top Keywords

fluorescence microscopy
8
2022 doi
8
analysis
6
live cell
4
fluorescence
4
cell fluorescence
4
fluorescence microscopy-an
4
microscopy-an end-to-end
4
end-to-end workflow
4
workflow high-throughput
4

Similar Publications

Background: The prognosis of a plasma cell neoplasm (PCN) varies depending on the presence of genetic abnormalities. However, detecting sensitive genetic mutations poses challenges due to the heterogeneous nature of the cell population in bone marrow aspiration. The established gold standard for cell sorting is fluorescence-activated cell sorting (FACS), which is associated with lengthy processing times, substantial cell quantities, and expensive equipment.

View Article and Find Full Text PDF

The mango cultivar 'Apple' is commercially important in Kenya but highly susceptible to russeting. Russeting refers to an area of fruit skin where the primary (epidermal) surface has been replaced by a secondary (peridermal) surface. The objective was to establish histologies, gene expressions and chemical compositions of a natural periderm, a wound-induced periderm and of cuticles of an un-russeted skin.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Super-resolution microscopy as drug discovery tool.

SLAS Discov

January 2025

Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4ZF. Electronic address:

At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look.

View Article and Find Full Text PDF

In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!