AI Article Synopsis

  • Strigolactones are phytohormones that significantly affect the germination and growth of arbuscular mycorrhizal fungi (AMF), with previous studies focusing on individual strains.
  • In experiments with AMF strains A5 and C2, C2 showed high germination rates regardless of conditions, while A5's germination improved with strigolactones but decreased in mixed cultures.
  • The study indicates that strigolactones can influence competitive relationships among AMF strains, with unique responses suggesting potential shifts in community dynamics.

Article Abstract

Strigolactones are phytohormones that influence arbuscular mycorrhizal fungal (AMF) spore germination, pre-symbiotic hyphal branching, and metabolic rates. Historically, strigolactone effects have been tested on single AMF strains. An open question is whether intraspecific variation in strigolactone effects and intraspecific interactions can influence AMF competition. Using the strains A5 and C2, we tested for intraspecific variation in the response of germination and pre-symbiotic growth (i.e., hyphal length and branching) to the strigolactones GR24 and 5-deoxystrigol. We also tested if interactions between these strains modified their germination rates and pre-symbiotic growth. Spore germination rates were consistently high (> 90%) for C2 spores, regardless of treatment and the presence of the other strain. For A5 spores, germination was increased by strigolactone presence from approximately 30 to 70% but reduced when grown in mixed culture. When growing together, branching increased for both strains compared to monocultures. In mixed cultures, strigolactones increased the branching for both strains but led to an increase in hyphal length only for the strain A5. These strain-specific responses suggest that strigolactones may have the potential to shift competitive dynamics among AMF species with direct implications for the establishment of the AMF community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524933PMC
http://dx.doi.org/10.3389/fmicb.2024.1470469DOI Listing

Publication Analysis

Top Keywords

shift competitive
8
competitive dynamics
8
spore germination
8
germination pre-symbiotic
8
strigolactone effects
8
intraspecific variation
8
pre-symbiotic growth
8
hyphal length
8
germination rates
8
strains
6

Similar Publications

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

The shift to pass/fail grading in undergraduate medical education was designed to reduce medical students' stress. However, this change has given rise to a "shadow economy of effort," as students move away from traditional didactic and clinical learning to engage in increasing numbers of research, volunteer, and work experiences to enhance their residency applications. These extracurricular efforts to secure a residency position are sub-phenomena of the hidden curriculum.

View Article and Find Full Text PDF

Fermi Level Shifts of Organic Semiconductor Films in Ambient Air.

ACS Appl Mater Interfaces

January 2025

Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping SE-60174, Sweden.

Here, the Fermi level () shifts of several donor and acceptor materials in different atmospheres are systematically studied by following the work function (WF) changes with Kelvin probe measurements, ultraviolet photoelectron spectroscopy, and near-ambient pressure X-ray photoelectron spectroscopy. Reversible shifts are found with the trend of higher WFs measured in ambient air and lower WFs measured in high vacuum compared to the WFs measured in ultrahigh vacuum. The shifts are energy level and morphology-dependent, and two mechanisms are proposed: (1) competition between p-doping induced by O and HO/O complexes and n-doping induced by HO; (2) polar HO molecules preferentially modifying the ionization energy of one of the frontier molecular orbitals over the other.

View Article and Find Full Text PDF

Communities with high native species diversity tend to be less susceptible to the establishment of invasive species, especially in studies that test their local impact. This study investigated the impact of competition between native submerged aquatic macrophytes (SAMs) ( and ) and the exotic , recognized for its invasive potential in aquatic ecosystems, through a mesocosm experiment conducted over six months. Two treatments were evaluated: the intraspecific competition of and an interspecific competition involving all three species.

View Article and Find Full Text PDF

Heat waves (HW) are projected to become more frequent and intense with climate change, potentially enhancing the invasiveness of certain plant species. This study aims to compare the physiological and photosynthetic responses of the invasive and its native congener under simulated heat wave conditions (40.1 °C, derived from local historical data).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!