The maintenance of energetic homeostasis relies on a tight balance between glycolysis and mitochondrial oxidative phosphorylation. The case of the brain is a peculiar one, as although entailing a constant demand for energy, it is believed to rely mostly on glucose, particularly at the level of neurons. Nonetheless, this has been challenged by studies that show that alternatives such as lactate, ketone bodies, and glutamate can be used as fuels to sustain neuronal activity. The importance of fatty acid (FA) metabolism to this extent is still unclear, albeit sustaining a significant energetic output when compared to glucose. While several authors postulate a possible role of FA for the energetic homeostasis of the brain, several others point out the intrinsic features of this pathway that make its contribution difficult to explain in the context of neuronal bioenergetics. Moreover, fueling preference at the synapse level is yet to be uncovered. In this review, we discuss in detail the arguments for and against the brain usage of FA. Furthermore, we postulate that the importance of this fuel may be greater at the synapse, where local mitochondria possess a set of features that enable a more effective usage of this fuel source.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493208 | PMC |
http://dx.doi.org/10.3390/neurosci5020016 | DOI Listing |
Proc Biol Sci
January 2025
Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis.
View Article and Find Full Text PDFCell Rep
January 2025
Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγ) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!