Phosphinopyridyl ligands are used to synthesize a class of Ni(II) bis(chelate) complexes, which have been comprehensively characterized in both solid and solution phases. The structures display a square-planar configuration within the primary coordination sphere, with axially positioned labile binding sites. Their electrochemical data reveal two redox couples during the reduction process, suggesting the possibility of accessing two-electron reduction states. Significantly, these complexes serve as robust catalysts for homogeneous photocatalytic H evolution. In a system utilizing an organic photosensitizer and a sacrificial electron donor, an optimal turnover number of 27,100 is achieved in an alcohol-containing aqueous solution. A series of photophysical and electrochemical measurements were conducted to elucidate the reaction mechanism of photocatalytic hydrogen generation. Density function theory calculations propose a catalytic pathway involving two successive one-electron reduction steps, followed by two proton discharges. The sustained photocatalytic activity of these complexes stems from their distinct ligand system, which includes phosphine and pyridine donors that aid in stabilizing the low oxidation states of the Ni center.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522921PMC
http://dx.doi.org/10.1021/jacsau.4c00714DOI Listing

Publication Analysis

Top Keywords

photocatalytic hydrogen
8
square-planar nickel
4
nickel bisphosphinopyridyl
4
complexes
4
bisphosphinopyridyl complexes
4
complexes long-lived
4
photocatalytic
4
long-lived photocatalytic
4
hydrogen evolution
4
evolution phosphinopyridyl
4

Similar Publications

Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFeS, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release.

View Article and Find Full Text PDF

Correlation between ligand-mediated silver species on TiO nanosheet with the photocatalytic hydrogen evolution activities.

J Colloid Interface Sci

December 2024

School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China. Electronic address:

Metal oxide photocatalysts loaded with metal species are extremely important in photocatalysis. The physicochemical states of metal species, as well as the interaction between metal species and support, determine the transfer of charge carriers between the heterointerface, which has a significant impact on photocatalytic activity. Here, we prepared anatase TiO nanosheets (TIO) modified with different Ag species, including single atoms, clusters, and nanoparticles, using a ligand-mediated method.

View Article and Find Full Text PDF

Simultaneous modulation of Ni single atoms and NiO clusters on TiO for solar-driven CO and HO conversion to CH.

J Colloid Interface Sci

December 2024

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

Construction of the photocatalysts with synergistic active sites holds great significance in enhancing the direct CO reduction coupled with HO oxidation under solar irradiation. This work demonstrates the fabrication of a dual-active-site catalyst (Ni-NiO/TiO) through in-situ formation and simultaneous modulation of Ni single atoms (Ni) and NiO clusters on porous TiO. Both Ni and NiO are characterized by X-ray absorption fine structure (XAFS) analyses and diffuse reflectance infrared Fourier transform spectroscopy using CO as a probe molecule (CO-DRIFTS).

View Article and Find Full Text PDF

Naphthalene Hydrodearomatization via Controllable Photocatalytic Hydroboration.

J Org Chem

December 2024

College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China.

The photocatalytic dearomative 1,4-hydroboration of naphthalenes with an N-heterocyclic carbene borane (NHC-BH) complex was reported herein with controllable regioselectivity and chemoselectivity. This protocol yielded a wide range of naphthalene derivatives bearing various functional groups, notably bioactive compounds. Hydroboration occurred through the cooperation of photoredox and hydrogen atom transfer via boryl radical addition to naphthalene and further selective protonation.

View Article and Find Full Text PDF

Bifunctional In Doping toward Defect Engineering in SrTiO for Solar Water Splitting.

Inorg Chem

December 2024

Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.

Defect engineering in SrTiO crystals plays a pivotal role in achieving efficient overall solar water splitting, as evidenced by the influence of Al ions. However, the uneven structural relaxation caused by Al ions has been overlooked, significantly affecting the defect state and catalytic activity. When an AlO crucible is used, optimizing this defect engineering presents a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!