Thiol-mediated uptake (TMU) is thought to occur through dynamic covalent cascade exchange networks. Here we show that the cascade accounting for TMU of asparagusic acid derivatives (AspA) ends in the Golgi apparatus (G) and shifts from disulfide to thioester exchange with palmitoyl transferases as the final exchange partner. As a result, AspA combined with pH-sensitive fluoresceins, red-shifted silicon-rhodamines, or mechanosensitive flipper probes selectively labels the Golgi apparatus in fluorescence microscopy images in living and fixed cells. AspA Golgi trackers work without cellular engineering and excel with speed, simplicity, generality, and compatibility with G/ER and cis/trans discrimination, morphological changes, anterograde vesicular trafficking, and superresolution imaging by stimulated emission depletion microscopy. Golgi flippers in particular can image membrane order and tension in the Golgi and, if desired, at the plasma membrane during TMU.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522900 | PMC |
http://dx.doi.org/10.1021/jacsau.4c00487 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China.
Autophagy is a ubiquitous process of organelle interaction in eukaryotic cells, in which various organelles or proteins are recycled and operated through the autophagy pathway to ensure nutrient and energy homeostasis. Although numerous fluorescent probes have been developed to image autophagy, these environment-responsive probes suffer from inherent deficiencies such as inaccuracy and limited versatility. Here, we present a modular macrocyclic amphiphile Förster Resonance Energy Transfer (FRET) platform (SC6A12C/NCM, SN), constructed through the amphiphilic assembly of sulfonatocalix[6]arene (SC6A12C) with N-cetylmorpholine (NCM) for lysosome targeting.
View Article and Find Full Text PDFJACS Au
October 2024
Department of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland.
Thiol-mediated uptake (TMU) is thought to occur through dynamic covalent cascade exchange networks. Here we show that the cascade accounting for TMU of asparagusic acid derivatives (AspA) ends in the Golgi apparatus (G) and shifts from disulfide to thioester exchange with palmitoyl transferases as the final exchange partner. As a result, AspA combined with pH-sensitive fluoresceins, red-shifted silicon-rhodamines, or mechanosensitive flipper probes selectively labels the Golgi apparatus in fluorescence microscopy images in living and fixed cells.
View Article and Find Full Text PDFmBio
February 2024
State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
Microsporidia are obligate intracellular parasites that infect a wide variety of hosts including humans. Microsporidian spores possess a unique, highly specialized invasion apparatus involving the polar filament, polaroplast, and posterior vacuole. During spore germination, the polar filament is discharged out of the spore forming a hollow polar tube that transports the sporoplasm components including the nucleus into the host cell.
View Article and Find Full Text PDFCurr Protoc
June 2023
Thermo Fisher Scientific, Pittsburgh, Pennsylvania.
A wide range of fluorescent dyes and reagents exist for labeling organelles in live and fixed cells. Choosing between them can lead to confusion, and optimization for many of them can be challenging. Presented here is a discussion on the commercially available reagents that have shown the most promise for each organelle of interest, including endoplasmic reticulum/nuclear membrane, Golgi apparatus, mitochondria, nucleoli, and nuclei, with an emphasis on localization of these structures for microscopy.
View Article and Find Full Text PDFJ Biol Chem
April 2023
Department für Chemie, Universität für Bodenkultur, Wien, Austria. Electronic address:
Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 β-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!