The effects of corticomuscular connectivity during object manipulation tasks with different haptic sensations have not been quantitatively investigated. Connectivity analyses enable the study of cortical effects and muscle responses during movements, revealing communication pathways between the brain and muscles. This study aims to examine the corticomuscular connectivity of three Electroencephalography (EEG) channels and five muscles during object manipulation tasks involving contact surfaces of Sandpaper, Suede, and Silk. The analyses included 12 healthy subjects performing tasks with their right hand. Power-Based Connectivity (PBC) and Mutual Information (MI) measures were utilized to evaluate significant differences in connectivity between contact surfaces, EEG channels, muscles, and frequency bands. The research yielded the following findings: Suede contact surface exhibited higher connectivity; Mu and Gamma frequency bands exerted greater influence; significant connectivity was observed between the three EEG channels ( , , ) and the Anterior Deltoid (AD) and Brachioradialis (B) muscles; and connectivity was primarily involved during active movement in the AD muscle compared to the resting state. These findings suggest potential implementation in motor rehabilitation for more complex movements using novel alternative training systems with high effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523752PMC
http://dx.doi.org/10.3390/neurosci4030018DOI Listing

Publication Analysis

Top Keywords

object manipulation
12
manipulation tasks
12
eeg channels
12
tasks haptic
8
haptic sensations
8
connectivity
8
corticomuscular connectivity
8
channels muscles
8
contact surfaces
8
frequency bands
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!