Purpose: The abnormal central glucose metabolism in Alzheimer's disease (AD) is related to the brain-gut axis. This study aims to explore the target of Danggui-Shaoyao-San (DSS) in improving cognitive impairment.
Method: This study analyzed the differences in mice intestinal flora by 16S rRNA sequencing. The cognitive protective effects of DSS were observed through the Morris water maze and the new object recognition. The mitigation effects of DSS on Aβ and p-tau, regulatory effects on glucose metabolism targets, and intestinal structure effects were observed through brain and colon slices staining. The differences in neural ultrastructure were compared by transmission electron microscopy.
Finding: The results showed that DSS affected the composition of intestinal dominant bacteria and bacteria genera and regulated the abundance of intestinal bacteria in AD mice. DSS improved the behavior of AD mice, alleviated the deposition of AD pathological products in the brain and colon, regulated the expression of glycometabolism-related proteins, and improved the colon barrier structure and neural ultrastructure in the brain of mice with AD.
Conclusion: Our findings suggest that DSS may affect AD central glucose metabolism and improve cognition by regulating the gut-brain axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527834 | PMC |
http://dx.doi.org/10.1002/brb3.70110 | DOI Listing |
Curr Cardiol Rep
January 2025
Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
With the global rise in advanced maternal age (AMA) pregnancies, the risk of gestational diabetes mellitus (GDM) increases. However, few GDM prediction models are tailored for AMA women. This study aims to develop a practical risk prediction model for GDM in AMA women.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Endocrine, Genetics and Metabolism, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an 710003, China.
Maturity-onset diabetes of the young (MODY) is a special type of diabetes characterized by clinical features including early onset of diabetes (before 30 years of age), autosomal dominant inheritance, impaired glucose-induced insulin secretion, and hyperglycemia. So far, 14 types of MODY have been reported, accounting for about 1%-5% of the patients with diabetes. MODY often presents with an insidious onset, and although 14 subtypes have been identified for MODY, it is frequently misdiagnosed as type 1 or type 2 diabetes due to overlapping clinical features and high costs and limitations of genetic testing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!