Background: Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain.
Methods: Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387 .
Results: Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations.
Conclusions: The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529025 | PMC |
http://dx.doi.org/10.1186/s12911-024-02726-6 | DOI Listing |
Sci Rep
January 2025
School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
The size of InGaN micro-LEDs is continuously decreasing to meet the demands of various emerging applications, especially in tiny micro-displays such as AR/VR. However, the conventional pixel definition based on plasma etching significantly damages the mesa sidewalls, leading to a severe reduction in efficiency as the micro-LED size decreases. This seriously impedes the development and application of micro-LEDs.
View Article and Find Full Text PDFKidney Int
January 2025
Néphrologie et Dialyse, Centre Hospitalier Le Mans, 194 Avenue Rubillard, 72037 Le Mans, France.
Kidney replacement therapy (KRT) is one of the most energy-consuming and waste-producing medical treatments. Reducing the need of dialysis is therefore an environmentally friendly choice. However, preferring prevention, lifestyle-related interventions and patient education to drugs is time consuming and most physicians are already overburdened by the many demands of routine clinical practice.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China. Electronic address:
Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets.
View Article and Find Full Text PDFWater Res
January 2025
NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, Jinan 250021, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong, Jinan 250012, China; Shandong Engineering Research Center for Transdermal Drug Delivery Systems, Shandong, Jinan 250098, China. Electronic address:
Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!