Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes. Various members of the SMYD family play significant roles in cancer proliferation, metastasis, and drug resistance by regulating cancer-specific histone methylation and nonhistone methylation. Thus, the development of specific inhibitors that target SMYD family members may lead to the development of cancer treatments, and combination therapy with various anticancer therapeutic agents may increase treatment efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611910 | PMC |
http://dx.doi.org/10.1038/s12276-024-01326-8 | DOI Listing |
bioRxiv
December 2024
Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
Allosteric regulation allows proteins to dynamically respond to environmental cues by modulating activity at sites away from the catalytic center. Despite its importance, the SET-domain protein lysine methyltransferase superfamily has been understudied. Here, we present four crystal structures of SMYD2, a unique family member with a MYND domain.
View Article and Find Full Text PDFExp Mol Med
November 2024
Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes.
View Article and Find Full Text PDFMol Cell Biol
November 2024
Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília 70910-900, Brazil.
SMYD4 is a member of the SMYD family that has lysine methyltransferase function. Little is known about the roles of in cancer. The aim of this study is to investigate genetic alterations in the gene across the most prevalent solid tumors and determine its potential as a biomarker.
View Article and Find Full Text PDFInt Immunopharmacol
January 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China. Electronic address:
Background: SMYD3 refers to a histone lysine methyltransferase from the SMYD family, which acts as a gene transcriptional regulator chiefly through catalysis of the histone subunit 3 at lysine 4 trimethylation (H3K4me3). Great progress has been made that epigenetic modification plays a pivotal role in regulating macrophage polarization. However, the effects of the histone lysine methyltransferase SMYD3 on macrophage polarization and phenotypic switching are unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!