Motivated by recent study on synthesized N, N-diphenylaniline (DPA)-based dyes [DOI: https://doi.org/10.1016/j.solener.2022.01.062 ] for use in dye-sensitized solar cells (DSSCs), we theoretically design several dyes and explore their potential for enhancing the efficiency of DSSCs. Our designed dyes are based on the molecular structure of synthesized DPA-azo-A and DPA-azo-N dyes with a donor-π-bridge-acceptor (D-π-A) framework. In this research, we aim to develop the power conversion efficiency (PCE) of DSSCs by fine-tuning the molecular structure of the synthesized dyes. To this end, we focus on designing dyes by replacing the units of DPA-azo-A and DPA-azo-N with a variety of donor, π-bridge, and acceptor. Hence the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are done to explore their structure, electronic, optical, charge transport, and photovoltaic properties. Among all newly designed and reference dyes, the D3-azo-N and DPA-π3-N dyes which are designed by substituting the donor (DPA) and π-bridge (azo) units of DPA-azo-N with D3 and π3, respectively exhibit the highest PCE of 45.46% (for D3-azo-N) and 43.20% (for DPA-π3-N) and can be favorable dyes for improving the efficiency of DSSCs. Therefore, the dyes that are designed by substituting the donor and π-bridge units of synthesized dyes have more impact on improving the efficiency of DSSCs than those that involve replacing the acceptor units. Consequently, our theoretical findings will provide valuable insights for the experimentalists to employ these novel effective dyes and boost the performance of DSSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528015PMC
http://dx.doi.org/10.1038/s41598-024-77953-yDOI Listing

Publication Analysis

Top Keywords

dyes
13
efficiency dsscs
12
dye-sensitized solar
8
solar cells
8
molecular structure
8
structure synthesized
8
dpa-azo-a dpa-azo-n
8
synthesized dyes
8
donor π-bridge
8
density functional
8

Similar Publications

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Vertical flow immunoassay for multiplex mycotoxins based on photonic nitrocellulose and SERS nanotags.

Food Chem X

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.

View Article and Find Full Text PDF

The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.

View Article and Find Full Text PDF

Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!