β-Lactoglobulin (β-Lg) is a prevalent allergenic protein found in most dairy products, which poses great food safety risks for individuals with allergies, especially for infants. Sensitive and effective detection methods for such allergens are essential to reduce the risk of allergies in daily life. Herein, a fluorescent aptamer bioassay based on a dual and cyclic bidirectional strand displacement means is developed for the sensitive detection of β-Lg in infant rice porridge and milk. The aptamer in the duplex DNA probe binds β-Lg to release the assistance strand to further hybridize with two hairpins, which triggers the initiation of two cyclic amplification cycles through the polymerization, displacement, and nicking of the strands under the action of DNA polymerase and endonuclease restriction enzymes. The amplification cycles lead to the unfolding of many fluorescently quenched signal probes to exhibit substantially enhanced fluorescence recovery for detecting β-Lg. The assay can realize detection of β-Lg in concentrations as low as 4.41 pM within the range of 0.01 to 10 nM. Furthermore, our sensing method has the capability to discriminate β-Lg from other proteins with high selectivity, resulting in low levels of β-Lg detection in rice porridge and milk samples, demonstrating promising potentials of the developed sensing method for monitoring various food allergens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-024-05618-w | DOI Listing |
J Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany. Electronic address:
Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.
View Article and Find Full Text PDFSmall
January 2025
School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510006, P. R. China.
In situ polymerization of cyclic ethers is a promising strategy to construct solid-state lithium (Li) metal batteries with high energy density and safety. However, their practical applications are plagued by the unsatisfactory electrochemical properties of polymer electrolytes and the unstable solid electrolyte interphase (SEI). Herein, organic perfluorodecanoic acid (PFDA) is proposed as a new initiator to polymerize 1,3-dioxolane electrolyte (PDOL), which enables the as-obtained PDOL electrolyte to deliver greatly enhanced ionic conductivity and broadened electrochemical window.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China. Electronic address:
With the rapid development of wearable electronic devices, flexible supercapacitors have gained strong interest. However, traditional sandwich supercapacitors have weak interfacial binding, resulting in high interface resistance and poor deformability. Herein, a self-healing integrated supercapacitor based on a polyacrylic acid-polyisodecyl methacrylate-CoSO gel polymer electrolyte (GPE) was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!