Targeting Long Noncoding RNA H19 in Subchondral Bone Osteocytes and the Alleviation of Cartilage Degradation in Osteoarthritis.

Arthritis Rheumatol

Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China.

Published: October 2024

Objective: Emerging evidence suggests long noncoding RNA H19 is associated with osteoarthritis (OA) pathology. However, how H19 contributes to OA has not been reported. This study aims to investigate the biologic function of H19 in OA subchondral bone remodeling and OA progression.

Methods: Clinical joint samples and OA animal models induced by surgical destabilization of the medial meniscus (DMM) were used to verify the causal relationship between osteocyte H19 and OA subchondral bone and cartilage changes. MLO-Y4 osteocyte cells subjected to fluid shear stress were used to verify the mechanism underlying H19-mediated mechanoresponse. Finally, the antisense oligonucleotide (ASO) against H19 was delivered to mice knee joints by magnetic metal-organic framework (MMOF) nanoparticles to develop a site-specific delivery method for targeting osteocyte H19 for OA treatment.

Results: Both clinical OA subchondral bone and wildtype mice with DMM-induced OA exhibit aberrant higher subchondral bone mass, with more H19 mice expressing osteocytes. On the contrary, mice with osteocyte-specific deletion of H19 are less vulnerable to DMM-induced OA phenotype. In MLO-Y4 cells, H19-mediated osteocyte mechanoresponse through PI3K/AKT/GSK3 signal activation by EZH2-induced H3K27me3 regulation on protein phosphatase 2A inhibition. Targeted inhibition of H19 (using ASO-loaded MMOF) substantially alleviates subchondral bone remodeling and OA phenotype.

Conclusion: In summary, our results provide new evidence that the elevated H19 expression in osteocytes may contribute to aberrant subchondral bone remodeling and OA progression. H19 appears to be required for the osteocyte response to mechanical stimulation, and targeting H19 represents a new promising approach for OA treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.43028DOI Listing

Publication Analysis

Top Keywords

subchondral bone
28
h19
13
h19 subchondral
12
bone remodeling
12
long noncoding
8
noncoding rna
8
rna h19
8
osteocyte h19
8
subchondral
7
bone
7

Similar Publications

Mosaicplasty is a relatively challenging procedure used in the management of focal osteochondral lesions of the joints. Donor-site morbidity is still the main concern after mosaicplasty because it entails the harvesting of an osteochondral autograft from an otherwise healthy region to be impacted later on the weight-bearing damaged site. We describe a possible alternative to conventional mosaicplasty with subchondral bone support harvested from the iliac crest as an osteoperiosteal autograft and covered with a minced cartilage layer.

View Article and Find Full Text PDF

May a Single Presurgical High-Field MRI Sequence Replace Standard Radiographs for TPLO Surgical Planning in Dogs?

Vet Radiol Ultrasound

January 2025

Ospedale Veterinario "I Portoni Rossi", Anicura Italy, Diagnostic Imaging Department (Mattei, Specchi), Surgical Department (Pratesi), Neuroradiology Department (Bernardini), Bologna, Italy.

Cranial cruciate ligament (CCL) disease causes variable stifle instability assessed by specific clinical tests. Radiographs are performed to measure the tibial plateau angle (TPA) for planning tibial plateau leveling osteotomy (TPLO) surgery. Concomitant damage to other intra-articular structures, for which clinical detection is unreliable, may occur and potentially affect the surgical outcome.

View Article and Find Full Text PDF

Background: Treatment of stable osteochondritis dissecans (OCD) lesions of the knee in young patients poses the challenge of abstaining from competitive sports for months. Outcomes relevant to this patient population additionally include successful return to sport (RTS), return to the same level of sport, and the time needed to achieve both.

Purpose: To evaluate the adolescent population for RTS outcomes after treatment of stable OCD lesions of the knee and to compare RTS outcomes between patients treated nonoperatively and those who required surgery.

View Article and Find Full Text PDF

Background: The accurate diagnosis of degenerative joint diseases (DJDs) of the temporomandibular joint (TMJ) presents a significant clinical challenge due to their progressive nature and the complexity of associated structural changes. These conditions, characterized by cartilage degradation, subchondral bone remodeling, and eventual joint dysfunction, necessitate reliable and efficient imaging techniques for early detection and effective management. Cone-beam computed tomography (CBCT) is widely regarded as the gold standard for evaluating osseous changes in the TMJ, offering detailed visualization of bony structures.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is a chronic articular disease characterized by the progressive degeneration of cartilage and bone tissue, leading to the appearance of subchondral cysts, osteophyte formation, and synovial inflammation. Conventional treatments consist of non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, and glucocorticoids. However, the prolonged use of these drugs causes adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!