This review examines the role of metabolic connectivity based on fluorodeoxyglucose-PET in understanding brain network organization across neurologic disorders, with a focus on neurodegenerative diseases. The article explores key methodologies for metabolic connectivity study and highlights altered connectivity patterns in Alzheimer's, Parkinson's, frontotemporal dementia, and other conditions. It also discusses emerging applications, including single-subject analyses and brain-organ interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cpet.2024.09.014 | DOI Listing |
J Hematol Oncol
January 2025
Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.
Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.
BMJ Open
January 2025
Department of Internal Medicine, Federal University of Rio Grande do Norte, Natal, Brazil.
Introduction: Until now, the thyroid cancer case number has increased, and it is not entirely possible to attribute this continuous growth to more meticulous thyroid nodule selection and more accurate diagnostic techniques. While there is currently no conclusive evidence linking dietary factors to thyroid cancer, certain dietary patterns seem to have an impact on the development of the disease. There are interesting connections among diet, environment, metabolism and thyroid carcinogenesis; a deeper comprehension of the underlying mechanisms should help the identification of modifiable risk factors for thyroid cancer.
View Article and Find Full Text PDFCancer Lett
January 2025
Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Life Sciences, Keele University, Staffordshire, UK. Electronic address:
The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain.
The connection between the respiratory capacity of skeletal muscle mitochondria and athletic performance is widely acknowledged in contemporary research. Building on a solid foundation of prior studies, current research has fostered an environment where scientists can effectively demonstrate how a tailored regimen of exercise intensity, duration, and frequency significantly boosts mitochondrial function within skeletal muscles. The range of exercise modalities is broad, spanning from endurance and high-intensity interval training to resistance-based exercises, allowing for an in-depth exploration of effective strategies to enhance mitochondrial respiratory capacity-a key factor in improving exercise performance, in other words offering a better skeletal muscle capacity to cope with exercise demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!