A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of phytoplankton, bacteria and viruses on nutrient supply in tropical waters. | LitMetric

Influence of phytoplankton, bacteria and viruses on nutrient supply in tropical waters.

J Environ Sci (China)

National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore. Electronic address:

Published: May 2025

Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton, bacteria and viruses in these ecosystems. They have the potential to substantially impact carbon (C), nitrogen (N) and phosphorus (P) biogeochemistry through their respective roles. This study characterizes the phytoplankton, bacteria and virus communities and the elemental composition of various C, N and P nutrients flow over three diel cycles in tropical urban lake. Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus (DOP) and PO. Specifically, green algae peaked during day time and exudate dissolved organic matter (DOM) that strongly modulate dissolved organic carbon (DOC):DOP ratio to diel DOP limitation. Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH and PO in nutrients-limited waters. Respective normalised surface PO and combined surface and bottom NH concentration selected both viruses and Synechococcus as important drivers. Process model of N and P biogeochemical cycles can achieve 69% and 57% similar to observed concentration of NH and PO, respectively. A short latent period of 9 hr was calculated, in addition to the calibrated high infectivity of viruses to Synechococcus. Taken together, the rapid turn-over between Synechococcus and viruses has biogeochemical significance, where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle, supporting a wide range of microbes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2024.02.032DOI Listing

Publication Analysis

Top Keywords

phytoplankton bacteria
12
dissolved organic
12
viruses synechococcus
12
bacteria viruses
8
viruses
6
influence phytoplankton
4
viruses nutrient
4
nutrient supply
4
supply tropical
4
tropical waters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!