Intracranial potentials are used as functional biomarkers of neural networks. As potentials spread away from the source populations, they become mixed in the recordings. In humans, interindividual differences in the gyral architecture of the cortex pose an additional challenge, as functional areas vary in location and extent. We used source separation techniques to disentangle mixing potentials obtained by exploratory deep arrays implanted in epileptic patients of either sex to gain access to the number, location, relative contribution, and dynamics of coactive sources. The unique spatial profiles of separated generators made it possible to discern dozens of independent cortical areas for each patient, whose stability maintained even during seizure, enabling the follow up of activity for days and across states. Through matching these profiles to MRI, we associated each with limited portions of sulci and gyri and determined the local or remote origin of the corresponding sources. We also plotted source-specific 3D coverage across arrays. In average, individual recording sites are contributed to by 3-5 local and distant generators from areas up to several centimeters apart. During seizure, 13-85% of generators were involved, and a few appeared anew. Significant bias in location assignment using raw potentials is revealed, including numerous false positives when determining the site of origin of a seizure. This is not amended by bipolar montage, which introduce additional errors of its own. In this way, source disentangling reveals the multisource nature and far intracranial spread of potentials in humans, while efficiently addressing patient-specific anatomofunctional cortical divergence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694403 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0695-24.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!