Nanofiber safety, especially immunogenicity, is important for their successful translation to clinical setting. This study provides a comprehensive evaluation of how nanofiber physical properties influence immune cells cultured on them, specifically peripheral blood mononuclear cells (PBMCs). We prepared nanofibers with a wide range of physical properties including various diameters, interfibrillar pore sizes and mat thicknesses, using four main polymers: polycaprolactone, alginate, chitosan, and zein. Our findings show that nanofiber diameters had only a marginal influence on the activity of immune cells, whereas interfibrillar nanofiber pore sizes had a significant effect, and mat thickness proved to have the greatest impact. Cells that penetrated deeper into the thick nanofiber mats ceased to proliferate but did not experience cytotoxicity. Moreover, we discovered that PBMCs penetrating the zein/PVP nanofiber mesh exhibited increased metabolic activity, indicating potential immunogenicity, whereas the other tested non-immunogenic nanofibers reduced it. To best of our knowledge, this study is the first to report on the impact of various nanofiber physical properties on in vitro immune cell behavior, thereby expanding the knowledge in the relatively unexplored field of nanofiber immunological safety. It underscores the need for rigorous preclinical nanofiber assessment and setting new standards for designing nanofiber-based biomedical products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137029 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.
Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.
View Article and Find Full Text PDFJ Patient Rep Outcomes
January 2025
Institute of Rheumatology, Belgrade, Serbia.
Objectives: To translate, cross-culturally adapt and validate the Serbian Ankylosing Spondylitis Quality of Life (ASQoL) questionnaire, e.g. according to the new nomenclature Radiographic-Axial Spondyloarthritis (r-axSpA), and to relate it to disease activity and functional status domains.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Coal mining in India, especially open-cast mining, substantially strengthens the economy while concurrently causing environmental deterioration, such as soil pollution with toxic chemicals and heavy metals. This study sought to examine the efficacy of vermicompost as a remediation technique for Mine Tailing Soil (MTS) in the Ledo Coal Fields. During a 120-day duration, different concentrations of vermicompost (20%, 30%, and 40%) were administered to MTS, and the impacts on soil physicochemical parameters, fertility, and plant growth were evaluated.
View Article and Find Full Text PDFOecologia
January 2025
Department of Oceanography, Uehiro Center for the Advancement of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!